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Abstract 

Algorithmic skeletons are widely used to manage multi-processor 
computations but are most effective when deployed for regular 
problems on homogeneous systems, where tasks may be divided 
evenly without regard for processor characteristics. With the growth in 
heterogeneity, where a multicore is coupled with GPUs, skeletons 
become layered and simple task distribution becomes sub-optimal. We 
explore heterogeneous skeletons which use a simple cost model based 
on a small number of key architecture characteristics to find good task 
distributions on heterogeneous multicore architectures. We present a 
new extension to an existing skeleton library associated cost model 
that enable GPUs to be exploited as general purpose multi-processor 
devices in heterogeneous multicore/GPU systems. The extended cost 
model is used to automatically find a good distribution for both a 
single heterogeneous multicore/GPU node, and clusters of 
heterogeneous multicore/GPU nodes. 
General Terms   Algorithms, Design, Performance 
Keywords   Parallel, Skeleton, Heterogeneous, Cost model, multicore, 
GPU 
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1. Introduction 
Graphical Processing Units (GPUs) were designed as specialized 
processors to accelerate graphics processing. Recently, however, the 
architectures that are comprised of multicores of GPUs have become 
ubiquitous and cost effective platform for both graphics and general-
purpose parallel computing as they offer extensive resources such as 
high memory bandwidth and massive parallelism [4]. Compared to a 
conventional core, the performance of a GPU comes from creating a 
large number of lightweight GPU threads with negligible overheads, 
where in general purpose multicore the limited number of cores limits 
the number of data elements that can be processed simultaneously. 
Today’s GPUs enable non-graphics programmers to exploit the 
parallel computing capabilities of a GPU using data parallelism. With 
the programmability available on the GPU, a new technique called 
General Purpose computation on GPU (GPGPU) has been developed 
[7]. Many parallel applications have achieved significant speedups 
with GPGPU implementations on a GPU over the CPU [3]. 
We have been exploring heterogeneous skeletons which use a simple 
cost model, based on a small number of key architecture 
characteristics, to find good task distributions on heterogeneous 
multicore architectures. We have constructed the HWSkel library [2] 
for heterogeneous architectures composed of distributed memory 
clusters of shared memory multi-core processors. The library, coupled 
with a simple cost model, offers good speed up for regular data 
parallel programs. 
 In this paper, we present the GPU-HWSkel extension to our skeletons, 
which enable GPUs to be exploited as general purpose multi-
processor devices in heterogeneous multicore/GPU architectures. We 
also present an extension to our HWSkel cost model which may be 
used to automatically find a good distribution for both a single 
heterogeneous multicore/GPU node, and cluster of heterogeneous 
multicore/GPU nodes. 
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2. GPU-HWSkel: A CUDA-Based Skeleton Library 
GPU-HWSkel is an extension of the HWSkel library [1, 2] which was 
designed for heterogeneous multicore cluster architectures. The 
HWSkel library provides data parallel heterogeneous skeletons such as 
hMapReduce and hMapReduceAll. They are novel in supporting 
execution on heterogeneous architectures, and facilitate performance 
portability, using an architectural cost model to automatically balance 
load across heterogeneous components of the architecture. HWSkel 
cost model characterise components of the architecture by the number 
of cores C, clock speed S, and crucially the size of the L2 cache L2, 
where the relative strength Strength1 of node i of heterogeneous 
multicore cluster is given by: 

      Strengthi = Ci * Si * L2i             (1)   

It is important to note that: 

 our model excludes network communication costs; 
 L2 is used as a shorthand for the top level shared cache which 

may be L3 on some processors 

The new library is designed with the aim of providing a high-level 
parallel programming environment to program parallel heterogeneous 
systems including single- and multicore CPU, and GPU architectures. 
The GPU-HWSkel library is based on the CUDA programming model 
to make GPGPU accessible on NVIDIA GPUs. This makes our 
approach limited to NVIDIA architectures. The new library 
implements the same set of data-parallel skeletons that are provided 
by the base HWSkel library [2], hMap and hReduce parallel skeletons, 
hMapReduce skeleton, and hMapReduceAll skeleton. These skeletons 
provide a general interface for both GPUs and CPUs since the library 
is based on OpenMP and MPI to support CPU implementations, as 
well as CUDA for GPU implementations. 

                                                             
1 In [2] we termed Strength “Power” but we now feel that this has inappropriate absolute connotations 
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3. A GPU Workload Distribution Cost Model 
We next introduce an extension of our approach to account for the 
GPU as an independent processing element and to automatically find a 
good distribution in heterogeneous multicore/GPU systems.  A new 
model is designed to provide a generic load-balancing strategy, so our 
skeletons will fully automate the distribution process on an integrated 
multicore/GPU architecture, which in turn makes the task of workload 
distribution much easier for the skeleton programmer. 

3.1. Related Work 
Several performance cost models have been developed to utilise the 
high performance of heterogeneous parallel systems. However, to the 
best of our knowledge little research has been done in considering the 
use of multiple cores and a GPU card simultaneously in heterogeneous 
architectures. This section briefly describes related models that 
consider using the heterogeneous multicore/GPU systems. 
    In [6] a performance cost model has been introduced in conjunction 
with a 2D-FFT library for finding the optimal distribution ratios 
between CPUs and GPUs. The model predicts the total execution time 
of a 2D-FFT of arbitrary data size. Firstly, the FFT computation is 
split into small steps, and then the model predicts the execution time 
for each execution step using profiling results on a heterogeneous 
multicore/GPU system, and finally the model determines the optimal 
load distribution ratio as the shortest predicted execution time.  
Moreover, the model attempts to overcome the limitation in the 
memory sizes of GPUs by iterating GPU library calls. 
    An adaptive mapping technique is implemented in the 
heterogeneous programming system called Qilin [5] for computation 
placement on heterogeneous multiprocessors. It is a fully automatic 
approach to find the optimal computation mapping to processing 
elements of a heterogeneous system. Qilin has a capability to use any 
heterogeneous platform, since it does not require any hardware 
information for its implementations. This technique uses execution 
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time projections stored in a database to determine the execution times 
of both CPU and GPU for a given program, problem size and 
hardware configuration. Further, the determined execution times are 
used to statically partition the workload among the CPU and GPU. 
Thus, the first step in the Qilin programming system is to conduct a 
training run to add data to a database. 
    An optimisation framework is introduced in [8] to improve the load 
balance on heterogeneous multicore/GPU systems. Instead of using 
static partitioning, the model applies a new adaptive technique that 
dynamically balances the workload distribution between the CPU 
cores and the GPU in a single node. At the beginning of execution, the 
model measures the performance of both the CPU and the GPU, and 
then the measurement is used to guide the workload distribution in the 
next step. In addition, the model tries to hide the communication 
overhead of transferring the data between CPU and GPU by providing 
software pipelining to overlap data transfers and kernel execution. 

3.2. Discussion 
Load-balancing at the multi-node heterogeneous hardware level can 
either be done dynamically or statically before program execution is 
started. Static cost models incur less overhead than dynamic models 
due to their simplicity and lack of runtime overhead. Besides, 
heterogeneous integrated multicore/GPU systems are nonetheless 
highly distributed. Hence, we wish to develop an accurate cost model 
and prediction mechanism to balance the workload distribution across 
the CPU and the GPU in each node as well as between the nodes in a 
cluster. The new cost model inherits all the features of the HWSkel 
cost model presented in [2]. However, in contrast to the performance 
cost models described previously, our cost model provides the 
following new features: 

    Heterogeneous-mode. The performance cost models in [5, 6, 8] 
measure the performance of both the CPU and the GPU in a 
heterogeneous system by using profiling. Our performance cost model 
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is based on two different type of performance measurements for the 
CPU and GPU. Since the performance of the GPU is changed by 
changing the data size while the performance of the CPU can be more 
stable for different data sizes, we measure the performance of the 
GPU with a training run, while the CPU performance is calculated 
using the hardware parameters. 

    Hardware-auto-selection. Since our performance cost model can 
provide enough information about the CPU and GPU performance 
capability, our heterogeneous skeletons can choose to use either the 
multicore CPU or a GPU card to execute the ongoing program. This 
feature will be discussed in more detail in the future 

3.3. Methodology 
The new model is viewed as two-phase since the underlying target 
hardware consists of two levels of heterogeneous hardware 
architectures. The model is divided into two main components: 
 

 Single-Node, to guide the workload distribution across the 
multiple cores and the GPU device inside each node in the 
integrated multicore/GPU system; 

 Multi-Node, to balance the workload across the nodes in the 
cluster. 

In general, we focus on predicting the runtime of the application code 
on the GPU device and use the HWSkel cost model [2] for measuring 
the processing strength of the CPU. In addition, since the workload is 
statically distributed across the multiple cores and the GPU and also 
between the nodes at the beginning of program execution, the model 
does not allow for any communication between the CPU cores and the 
GPU or between the nodes in the system other than via the skeleton. 
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3.3.1. Single-Node Cost Model 
We base the workload distribution on the performance ratio between 
the core and GPU in the integrated multicore/GPU computing node. 
So the cost model aims to predict the execution time of a single core 
vs. the GPU device for arbitrary data sizes, and calculates the chunk 
size for a CPU core and the GPU by using this performance ratio. To 
facilitate our discussion, let us introduce the following notation: 

TC: Program runtime on a single core. 
TG: Program runtime on the GPU. 
Strength: The relative strength of computational unit. 
C : Number of cores in a single node. 
D : Data Size. 

We start by calculating Strength, the relative strengths of the GPU and 
a single core: 

Strength = TC / TG 

If the GPU is allocated DGPU units of data then the multicore will 
 

DGPU * Strength /(C - 1) 
 

units. As the node comprises a multicore and a single GPU, the total 
data size is 
 

Dtotal = DGPU + DGPU * Strength /(C - 1) 

Factoring out DGPU, the data allocated to the multicore is 

Dmulticore = Dtotal / (1 + Strength / (C - 1)) 

and the each core is allocated 

Dcore = Dmulticore /(C - 1) 
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3.3.2. Multi-Node Cost Model 
The Multi-Node cost model is based on the Single-Node cost model to 
determine the chunk size for each node in the system. As a 
heterogeneous cluster might have different kinds of computing nodes, 
the key idea of the Multi-Node cost model is to measure the relative 
strength for each node in the cluster. Hence, the total available 
strength Strength for n nodes is given by: 

푆푡푟푒푛푔푡ℎ 푆푡푟푒푛푔푡ℎ  

So for data size Dtotal, the chunk size for node i is: 

(Strengthi/Strengthtotal) * Dtotal 

Nodes may have different architectures, and hence strengths. The 
relative strength of a node i that consists of a GPU and multiple cores  
 
 
is the sum of the relative strengths of the cores, Strengthcore, and 
the GPU StrengthGPU: 
 
Strengthi=(Ci-1)*Strengthcorei+StrengthGPUi    (2) 

if there is only a single core, i.e. C = 1, it follows directly that 

         Strengthi = StrengthGPUi           (3) 

To calculate Strengthcore and StrengthGPU, we first measure 
TCbase, the runtime of the program on core of the system, and use it 
follows. 

         StrengthGPUi = TCbase/TGi             (4) 
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In practice we predict the relative strengths on the base core, 
StrengthCbase, and on the cores of node i, StrengthCi using the 
HWSkel cost model, i.e. Equation 1 in Section 2: 
 
         StrengthCi = Si * L2i               (5) 

         StrengthCbase = Sbase _ L2base         (6) 

Hence the relative strength of a core on node i is: 
 
   Strengthcorei = StrengthCi/StrengthCbase     (7) 
 
Substituting equations (4) and (7) in (2) gives the cost equation used 
in the GPU-HWSkel library: 
 
Strengthi = (Ci-1)*StrengthCi/StrengthCbase 
                            +StrengthGPUi    (8) 
 
The key point is that we need only measure TGi and TCbase to 
parametrise the model. 

4. GPU-HWSkel Evaluation 

4.1. Benchmarks 
The performance of each GPU-HWSkel skeleton is evaluated using 
two applications: the first is the widely used matrix multiplication, and 
the second is an iterative Fibonacci program. 

Matrix Multiplication. A well-known representative for a wide range 
of high-performance applications is the problem of multiplying two 
matrices. There are a number of different techniques to multiply 
matrices. Here, the number of multiplications performed is reduced by 
breaking down the input matrices into several submatrices. 
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 Fibonacci Program. Fibonacci is a function that computes Fibonacci 
numbers. In our experiment, we use a simple program that calculate 
the Fibonacci value for an array of integer numbers with fixed 
constant by replicating the fib function in the original sequential 
program. In the parallel version, the array of the integers is split into 
chunks using a split function which employs the cost model for load 
distribution, and then the fib function is mapped in parallel across 
each chunk. 

4.2. Platform 
We conduct our experiments on a heterogeneous cluster with a 
number of different integrated multicore/GPU nodes located at Heriot-
Watt University as described in Table 1. Each of the machines is 
connected to an NVIDIA GeForce GT 520 GPU device. The device 
has 1 GB of DRAM , one multiprocessor (MIMD unit) clocked at 810 
MHz, and 48 processor cores (SIMD units) running at 1620 MHz with 
16 KB of shared memory. CUDA version 4.0 was used for the 
experiments. The CUDA code was compiled using the NVIDIA 
CUDA Compiler (NVCC) to generate the device code that is launched 
from the host CPU. 

Table 1: Experimental Architectures. 

 
Name 

 
CPU 

 
GPU 

archi Cores MHz L2 archi SM Cores MHz 
lxpara Xeon 5410 8 1998 6144KB GT520 1 48 1620 
lxphd IntelE8400 2 1998 6144KB GT520 1 48 1620 

linuxlab 2 DuoCPU 2 1200 2048KB G 520 1 48 1620 
brahma Xeon(TM) 4 3065 512KB GT520 1 48 1620 
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4.3. Performance Evaluation 
For all the measurements that are performed on the two-core (such as 
linux and lxphd) machines, we follow the common practice of 
increasing the input-data size to evaluate the behaviour consistency of 
the hMap skeleton with our performance cost model. While in the case 
of using machines with an eight-core processor (such as lxpara), all 
programs are measured with a fixed data size on 1,2,3,4,5,6, and 7 
cores together with a single GPU device. We measure the runtimes for 
the hMap skeleton implementation, with a fixed data size of 1500 x 
1500 for the input matrices, and 80,000 elements of Fibonacci 
(1,000,000). 

4.3.1. Single multicore/GPU Node Results 
The single-node experiments have been carried out our on linux lab, 
lxphd, and lxpara as single nodes.  
Table 2 and 3 show the hMap runtime for matrix multiplication and 
Fibonacci on linux lab and lxphd respectively. The measurements 
report the runtime on 1 core, GPU, GPU plus 1 core, and show the 
percentage improvement of hMap using the CM2 cost model. The 
hMap Fibonacci has an improvement of 95% over the sequential time 
and improvement of 4% over the GPU time on linux lab and lxphd 
using CM2 , while the hMap matrix multiplication has an 
improvement of 68% over the sequential time on both linux lab and 
lxphd, and improvement of 32% on linux lab and 20% over the GPU 
time on lxphd.  
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Table 2: 1 Core hMap Runtimes (linux lab). 

 
Data  
size 

Run-Time (s) 
1 Core+GPU 

Improvement% 
1 Core GPU 1 Core+GPU 1 Core GPU 

800x800 2.31 1.40 1.32 42% 5% 
900x900 3.30 1.77 1.54 53% 12% 

1000x1000 4.52 2.09 1.80 60% 13% 
1100x1100 6.02 2.73 2.12 64% 22% 
1200x1200 7.82 3.26 2.54 68% 22% 
1300x1300 9.94 4.29 3.19 67% 25% 
1400x1400 12.41 5.37 4.00 67% 25% 
1500x1500 15.26 7.23 4.91 67% 32% 

(a) matrix multiplication 

 
Data  
size 

Run-Time (s) 
1 Core+GPU 

Improvement% 
1 Core GPU 1 Core+GPU 1 Core GPU 

1000 3.36 0.19 0.17 94% 10% 
2000 6.77 0.34 0.32 95% 5% 
5000 17.02 0.79 0.75 95% 5% 

10000 34.17 1.53 1.47 95% 3% 
20000 67.93 3.06 2.91 95% 4% 
30000 103.30 4.55 4.39 95% 3% 
40000 137.08 6.071 5.79 95% 4% 
50000 170.80 7.55 7.24 95% 4% 
60000 207.33 9.05 8.69 95% 4% 
70000 243.79 10.51 10.12 95% 3% 
80000 278.04 12.05 11.52 95% 4% 

(b) Fibonacci 
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Table 3: 1 Core hMap Runtimes (lxphd). 

 
Data  
size 

Run-Time (s) 
1 Core+GPU 

Improvement% 
1 Core GPU 1 Core+GPU 1 Core GPU 

800x800 4.28 1.47 1.41 67% 4% 
900x900 6.09 1.84 1.66 72% 9% 

1000x1000 8.37 2.25 1.98 76% 12% 
1100x1100 11.12 2.88 2.36 78% 18% 
1200x1200 14.43 3.49 3.07 78% 12% 
1300x1300 18.34 4.46 3.90 78% 12% 
1400x1400 22.91 5.79 4.88 78% 12% 
1500x1500 28.25 7.61 6.02 78% 20% 

(a) matrix multiplication 

 
Data  
size 

Run-Time (s) 
1 Core+GPU 

Improvement% 
1 Core GPU 1 

Core+GPU 
1 Core GPU 

1000 3.27 0.20 0.19 94% 5% 
2000 6.53 0.36 0.34 94% 5% 
5000 16.36 0.79 0.77 95% 2% 

10000 32.75 1.55 1.48 95% 4% 
20000 65.47 3.07 2.93 95% 4% 
30000 98.13 4.55 4.39 95% 3% 
40000 130.97 6.07 5.77 95% 4% 
50000 163.57 7.53 7.22 95% 4% 
60000 196.44 9.06 8.67 95% 4% 
70000 229.18 10.55 10.06 95% 4% 
80000 261.77 12.00 11.52 95% 4% 

(b) Fibonacci 

Table 4 shows the runtime of matrix multiplication with data size of 
1500 x 1500 and Fibonacci with data size 80,000 elements with a 
value of 1,000,000 using hMap on lxpara. The measurements show 
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that the hMap Fibonacci has improvement of 77% over 8 cores, while 
the hMap matrix multiplication shows that there is no improvement 
after 6 cores. The parallel performance is measured as the absolute 
speedup of using both the GPU device and the multiple cores within a 
single machine. Here the experiments have been carried out on linux, 
lxphd, and lxpara machines as single nodes. 

Table 4: Multiple Core hMap Runtimes (lxpara). 

 
Data  
size 

Run-Time (s) 
1 Core+GPU 

Improvement% 
Cores GPU (Core-1)+GPU Cores GPU 

1 19.60 7.26 7.26 62% 0% 
2 9.82 7.26 5.31 45% 26% 
3 6.55 7.26 4.20 35% 42% 
4 4.93 7.26 3.48 29% 52% 
5 3.94 7.26 3.09 21% 57% 
6 3.29 7.26 2.92 11% 59% 
7 2.89 7.26 2.84 1% 60% 
8 2.54 7.26 2.78 -9% 61% 

(a) matrix multiplication 

 
Data  
size 

Run-Time (s) 
1 Core+GPU 

Improvement% 
Cores GPU (Core-1)+GPU Cores GPU 

1 344.37 12.03 12.03 96% 0% 
2 172.01 12.03 11.60 93% 3% 
3 114.85 12.03 11.28 90% 6% 
4 86.06 12.03 10.90 87% 9% 
5 68.99 12.03 10.59 84% 11% 
6 57.43 12.03 10.27 82% 14% 
7 49.26 12.03 9.96 79% 17% 
8 43.09 12.03 9.69 77% 19% 

(b) Fibonacci 
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Figures 1 and 2 show the absolute speedup achieved for the Fibonacci 
and matrix multiplication programs with different input data sizes on 
the two-core linux and lxphd machines respectively. The graphs in 
Figures 1 and 2 compare the absolute speedup curve for one CPU-core 
plus single GPU implementation with the curve for GPU 
implementation.  

 
A - Matrix Multiplication (linux-lab) 

 
B - Fibonacci (linux-lab) 

Figure 1: hMap Absolute Speedup on (linux lab) 
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Although the computing capability of GPU is relatively large 
compared with the computational strength of a single CPU-core, 
results show that using CPU-cores together with a GPU can deliver an 
expected and acceptable speedups on both machines. 

A - Matrix Multiplication (lxphd) 

B - Fibonacci (lxphd) 

Figure 2: hMap Absolute Speedup on (lxphd) 
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Our results also suggest that using the performance cost model for 
determining granularity and data placement on different 
heterogeneous architectures can provide a good load balance for data 
distribution between CPU-cores and a GPU. This is reflected in the 
speedup graphs where the curves are broadly similar for both 
programs with different input data size on different parallel 
heterogeneous architectures. Next, to investigate the impact of the 
placement strategy on parallel performance of a varying number of 
CPU-cores with a single GPU, the experiments have been run with the 
Fibonacci and matrix multiplication programs on a machine with eight 
CPU-cores (lxpara). Figure 3 compares the absolute speedups of both 
Fibonacci and matrix multiplication programs on only CPU-cores and 
GPU, and CPU-core+GPU of the lxpara machine. This shows that in 
both programs a good performance has been obtained as anticipated. 
    Firstly, the results presented in Figure 3 are consistent with others 
that obtained for both programs on the linux and lxphd machines, 
where the speedup is increased by using one CPU-core plus the GPU. 
    Secondly, we have obtained almost linear speedup with parallel 
efficiency of about 99% in both programs on CPU-cores. However, in 
the matrix multiplication program the speedup has a slight degradation 
to 95% parallel efficiency after six cores due to decreasing the chunk 
size. The results show that our skeleton delivers 28x from the GPU 
compared to a single CPU-core in the Fibonacci program, while we 
report nearly 2.8x speedup over a CPU-core by using a GPU in the 
matrix multiplication application. The variation in speedup between 
programs is due to the GPU-HWSkel-based parallel algorithm used for 
each program. Since the major problem with GPU implementations 
which affects the performance efficiency is the size of data being 
transferred between CPU and GPU, the algorithm requires too much 
data communication, which in turn increases the CPU/GPU 
communication overhead. Therefore, it is obvious that the algorithm 
for matrix multiplication is more suitable for multicore processors 
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than a GPU implementation, while the Fibonacci program makes a 
good GPU program. 

A- Matrix Multiplication (lxpara) 

B - Fibonacci (lxpara) 

Figure 3: hMap Absolute Speedup on (lxpara) 
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4.3.2. Clusters of multicore/GPU Nodes Results 
We evaluate the performance of an early version our cost model and 
its effect on our hMap heterogeneous skeletons on different 
combinations of the architectures outlined in Section 4.2. Figure 4 
plots the speedups for different configurations with different 
processing elements calculating Fibonacci(1000000) 1500,000 times. 
The graph compares the speedups of three different kinds of 
computing units (i.e. CPU-cores, GPU-device, and GPU-device plus 
CPU-cores) on different numbers of given machines. Figure 4 shows 
that the results are consistent with those that were presented in Section 
4.3.1. However, the performance of our hMap skeleton has been 
improved by exploiting the CPU-cores along with GPU in each host 
node. We suggest once again that our performance cost model has 
provided a good strategy of data placement for heterogeneous 
architectures. The graph shows that the implementation of our hMap 
skeleton can deliver good scalability, where the upper speedup curve 
shows improved performance results for using our cost model for data 
placement between the heterogeneous nodes as well as within each 
node between multiple cores and GPU. 

 

Figure 4: Speedups for the hMap on a Heterogeneous Cluster 
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5. Conclusions and Future Work 
In this paper, a new performance cost model has been presented for 
heterogeneous integrated multicore/GPU systems. The purpose of the 
new cost model is to balance the workload distribution between the 
nodes on heterogeneous cluster as well as between multiple cores and 
GPU device inside each node in cluster. Our cost model is viewed as 
two-phase, the Single-Node phase guides workload distribution across 
a CPU core and a GPU using the performance ratio between the CPU 
and GPU in the integrated multicore/GPU computing node, and the 
Multi-Node phase balances the distribution of workload among the 
nodes on heterogeneous integrated multicore/GPU cluster. In general, 
we focus on predicting the runtime of the application code on the GPU 
and use an architectural performance cost model for measuring the 
processing strength of CPU to calculate the performance ratio. In 
summary, our experimental results show that using multiple cores 
together with a GPU in the same host with our skeleton and cost 
model can deliver good performance either on a single node or on 
multiple node architecture. Our work has a number of limitations, 
which we propose to address in future work: 

 As noted above, our cost models do not take account of 
communication costs. We will explore how our simple notion 
of strength can be extended to account for communication 
characteristics. 

 Our library, being based on CUDA, is NVIDIA specific. We 
will modify our library to use the OpenCL standard. 
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