

3

A Cost Model for Heterogeneous Skeletons for

CPU/GPU Systems

Khari A. Armih
College of Computer Technology, Zawia, Libya
khari.armih@gmail.com

Mustafa K. Aswad
Faculty of Engineering, Sabratha University, Libya
mustafaasawd@gmail.com

Abstract

Algorithmic skeletons are widely used to manage multi-processor
computations but are most effective when deployed for regular
problems on homogeneous systems, where tasks may be divided
evenly without regard for processor characteristics. With the growth in
heterogeneity, where a multicore is coupled with GPUs, skeletons
become layered and simple task distribution becomes sub-optimal. We
explore heterogeneous skeletons which use a simple cost model based
on a small number of key architecture characteristics to find good task
distributions on heterogeneous multicore architectures. We present a
new extension to an existing skeleton library associated cost model
that enable GPUs to be exploited as general purpose multi-processor
devices in heterogeneous multicore/GPU systems. The extended cost
model is used to automatically find a good distribution for both a
single heterogeneous multicore/GPU node, and clusters of
heterogeneous multicore/GPU nodes.
General Terms Algorithms, Design, Performance
Keywords Parallel, Skeleton, Heterogeneous, Cost model, multicore,
GPU

4

1. Introduction
Graphical Processing Units (GPUs) were designed as specialized
processors to accelerate graphics processing. Recently, however, the
architectures that are comprised of multicores of GPUs have become
ubiquitous and cost effective platform for both graphics and general-
purpose parallel computing as they offer extensive resources such as
high memory bandwidth and massive parallelism [4]. Compared to a
conventional core, the performance of a GPU comes from creating a
large number of lightweight GPU threads with negligible overheads,
where in general purpose multicore the limited number of cores limits
the number of data elements that can be processed simultaneously.
Today’s GPUs enable non-graphics programmers to exploit the
parallel computing capabilities of a GPU using data parallelism. With
the programmability available on the GPU, a new technique called
General Purpose computation on GPU (GPGPU) has been developed
[7]. Many parallel applications have achieved significant speedups
with GPGPU implementations on a GPU over the CPU [3].
We have been exploring heterogeneous skeletons which use a simple
cost model, based on a small number of key architecture
characteristics, to find good task distributions on heterogeneous
multicore architectures. We have constructed the HWSkel library [2]
for heterogeneous architectures composed of distributed memory
clusters of shared memory multi-core processors. The library, coupled
with a simple cost model, offers good speed up for regular data
parallel programs.
 In this paper, we present the GPU-HWSkel extension to our skeletons,
which enable GPUs to be exploited as general purpose multi-
processor devices in heterogeneous multicore/GPU architectures. We
also present an extension to our HWSkel cost model which may be
used to automatically find a good distribution for both a single
heterogeneous multicore/GPU node, and cluster of heterogeneous
multicore/GPU nodes.

5

2. GPU-HWSkel: A CUDA-Based Skeleton Library
GPU-HWSkel is an extension of the HWSkel library [1, 2] which was
designed for heterogeneous multicore cluster architectures. The
HWSkel library provides data parallel heterogeneous skeletons such as
hMapReduce and hMapReduceAll. They are novel in supporting
execution on heterogeneous architectures, and facilitate performance
portability, using an architectural cost model to automatically balance
load across heterogeneous components of the architecture. HWSkel
cost model characterise components of the architecture by the number
of cores C, clock speed S, and crucially the size of the L2 cache L2,
where the relative strength Strength1 of node i of heterogeneous
multicore cluster is given by:

 Strengthi = Ci * Si * L2i (1)

It is important to note that:

 our model excludes network communication costs;
 L2 is used as a shorthand for the top level shared cache which

may be L3 on some processors

The new library is designed with the aim of providing a high-level
parallel programming environment to program parallel heterogeneous
systems including single- and multicore CPU, and GPU architectures.
The GPU-HWSkel library is based on the CUDA programming model
to make GPGPU accessible on NVIDIA GPUs. This makes our
approach limited to NVIDIA architectures. The new library
implements the same set of data-parallel skeletons that are provided
by the base HWSkel library [2], hMap and hReduce parallel skeletons,
hMapReduce skeleton, and hMapReduceAll skeleton. These skeletons
provide a general interface for both GPUs and CPUs since the library
is based on OpenMP and MPI to support CPU implementations, as
well as CUDA for GPU implementations.

1 In [2] we termed Strength “Power” but we now feel that this has inappropriate absolute connotations

6

3. A GPU Workload Distribution Cost Model
We next introduce an extension of our approach to account for the
GPU as an independent processing element and to automatically find a
good distribution in heterogeneous multicore/GPU systems. A new
model is designed to provide a generic load-balancing strategy, so our
skeletons will fully automate the distribution process on an integrated
multicore/GPU architecture, which in turn makes the task of workload
distribution much easier for the skeleton programmer.

3.1. Related Work
Several performance cost models have been developed to utilise the
high performance of heterogeneous parallel systems. However, to the
best of our knowledge little research has been done in considering the
use of multiple cores and a GPU card simultaneously in heterogeneous
architectures. This section briefly describes related models that
consider using the heterogeneous multicore/GPU systems.
 In [6] a performance cost model has been introduced in conjunction
with a 2D-FFT library for finding the optimal distribution ratios
between CPUs and GPUs. The model predicts the total execution time
of a 2D-FFT of arbitrary data size. Firstly, the FFT computation is
split into small steps, and then the model predicts the execution time
for each execution step using profiling results on a heterogeneous
multicore/GPU system, and finally the model determines the optimal
load distribution ratio as the shortest predicted execution time.
Moreover, the model attempts to overcome the limitation in the
memory sizes of GPUs by iterating GPU library calls.
 An adaptive mapping technique is implemented in the
heterogeneous programming system called Qilin [5] for computation
placement on heterogeneous multiprocessors. It is a fully automatic
approach to find the optimal computation mapping to processing
elements of a heterogeneous system. Qilin has a capability to use any
heterogeneous platform, since it does not require any hardware
information for its implementations. This technique uses execution

7

time projections stored in a database to determine the execution times
of both CPU and GPU for a given program, problem size and
hardware configuration. Further, the determined execution times are
used to statically partition the workload among the CPU and GPU.
Thus, the first step in the Qilin programming system is to conduct a
training run to add data to a database.
 An optimisation framework is introduced in [8] to improve the load
balance on heterogeneous multicore/GPU systems. Instead of using
static partitioning, the model applies a new adaptive technique that
dynamically balances the workload distribution between the CPU
cores and the GPU in a single node. At the beginning of execution, the
model measures the performance of both the CPU and the GPU, and
then the measurement is used to guide the workload distribution in the
next step. In addition, the model tries to hide the communication
overhead of transferring the data between CPU and GPU by providing
software pipelining to overlap data transfers and kernel execution.

3.2. Discussion
Load-balancing at the multi-node heterogeneous hardware level can
either be done dynamically or statically before program execution is
started. Static cost models incur less overhead than dynamic models
due to their simplicity and lack of runtime overhead. Besides,
heterogeneous integrated multicore/GPU systems are nonetheless
highly distributed. Hence, we wish to develop an accurate cost model
and prediction mechanism to balance the workload distribution across
the CPU and the GPU in each node as well as between the nodes in a
cluster. The new cost model inherits all the features of the HWSkel
cost model presented in [2]. However, in contrast to the performance
cost models described previously, our cost model provides the
following new features:

 Heterogeneous-mode. The performance cost models in [5, 6, 8]
measure the performance of both the CPU and the GPU in a
heterogeneous system by using profiling. Our performance cost model

8

is based on two different type of performance measurements for the
CPU and GPU. Since the performance of the GPU is changed by
changing the data size while the performance of the CPU can be more
stable for different data sizes, we measure the performance of the
GPU with a training run, while the CPU performance is calculated
using the hardware parameters.

 Hardware-auto-selection. Since our performance cost model can
provide enough information about the CPU and GPU performance
capability, our heterogeneous skeletons can choose to use either the
multicore CPU or a GPU card to execute the ongoing program. This
feature will be discussed in more detail in the future

3.3. Methodology
The new model is viewed as two-phase since the underlying target
hardware consists of two levels of heterogeneous hardware
architectures. The model is divided into two main components:

 Single-Node, to guide the workload distribution across the
multiple cores and the GPU device inside each node in the
integrated multicore/GPU system;

 Multi-Node, to balance the workload across the nodes in the
cluster.

In general, we focus on predicting the runtime of the application code
on the GPU device and use the HWSkel cost model [2] for measuring
the processing strength of the CPU. In addition, since the workload is
statically distributed across the multiple cores and the GPU and also
between the nodes at the beginning of program execution, the model
does not allow for any communication between the CPU cores and the
GPU or between the nodes in the system other than via the skeleton.

9

3.3.1. Single-Node Cost Model
We base the workload distribution on the performance ratio between
the core and GPU in the integrated multicore/GPU computing node.
So the cost model aims to predict the execution time of a single core
vs. the GPU device for arbitrary data sizes, and calculates the chunk
size for a CPU core and the GPU by using this performance ratio. To
facilitate our discussion, let us introduce the following notation:

TC: Program runtime on a single core.
TG: Program runtime on the GPU.
Strength: The relative strength of computational unit.
C : Number of cores in a single node.
D : Data Size.

We start by calculating Strength, the relative strengths of the GPU and
a single core:

Strength = TC / TG

If the GPU is allocated DGPU units of data then the multicore will

DGPU * Strength /(C - 1)

units. As the node comprises a multicore and a single GPU, the total
data size is

Dtotal = DGPU + DGPU * Strength /(C - 1)

Factoring out DGPU, the data allocated to the multicore is

Dmulticore = Dtotal / (1 + Strength / (C - 1))

and the each core is allocated

Dcore = Dmulticore /(C - 1)

10

3.3.2. Multi-Node Cost Model
The Multi-Node cost model is based on the Single-Node cost model to
determine the chunk size for each node in the system. As a
heterogeneous cluster might have different kinds of computing nodes,
the key idea of the Multi-Node cost model is to measure the relative
strength for each node in the cluster. Hence, the total available
strength Strength for n nodes is given by:

푆푡푟푒푛푔푡ℎ 푆푡푟푒푛푔푡ℎ

So for data size Dtotal, the chunk size for node i is:

(Strengthi/Strengthtotal) * Dtotal

Nodes may have different architectures, and hence strengths. The
relative strength of a node i that consists of a GPU and multiple cores

is the sum of the relative strengths of the cores, Strengthcore, and
the GPU StrengthGPU:

Strengthi=(Ci-1)*Strengthcorei+StrengthGPUi (2)

if there is only a single core, i.e. C = 1, it follows directly that

 Strengthi = StrengthGPUi (3)

To calculate Strengthcore and StrengthGPU, we first measure
TCbase, the runtime of the program on core of the system, and use it
follows.

 StrengthGPUi = TCbase/TGi (4)

11

In practice we predict the relative strengths on the base core,
StrengthCbase, and on the cores of node i, StrengthCi using the
HWSkel cost model, i.e. Equation 1 in Section 2:

 StrengthCi = Si * L2i (5)

 StrengthCbase = Sbase _ L2base (6)

Hence the relative strength of a core on node i is:

 Strengthcorei = StrengthCi/StrengthCbase (7)

Substituting equations (4) and (7) in (2) gives the cost equation used
in the GPU-HWSkel library:

Strengthi = (Ci-1)*StrengthCi/StrengthCbase
 +StrengthGPUi (8)

The key point is that we need only measure TGi and TCbase to
parametrise the model.

4. GPU-HWSkel Evaluation

4.1. Benchmarks
The performance of each GPU-HWSkel skeleton is evaluated using
two applications: the first is the widely used matrix multiplication, and
the second is an iterative Fibonacci program.

Matrix Multiplication. A well-known representative for a wide range
of high-performance applications is the problem of multiplying two
matrices. There are a number of different techniques to multiply
matrices. Here, the number of multiplications performed is reduced by
breaking down the input matrices into several submatrices.

12

 Fibonacci Program. Fibonacci is a function that computes Fibonacci
numbers. In our experiment, we use a simple program that calculate
the Fibonacci value for an array of integer numbers with fixed
constant by replicating the fib function in the original sequential
program. In the parallel version, the array of the integers is split into
chunks using a split function which employs the cost model for load
distribution, and then the fib function is mapped in parallel across
each chunk.

4.2. Platform
We conduct our experiments on a heterogeneous cluster with a
number of different integrated multicore/GPU nodes located at Heriot-
Watt University as described in Table 1. Each of the machines is
connected to an NVIDIA GeForce GT 520 GPU device. The device
has 1 GB of DRAM , one multiprocessor (MIMD unit) clocked at 810
MHz, and 48 processor cores (SIMD units) running at 1620 MHz with
16 KB of shared memory. CUDA version 4.0 was used for the
experiments. The CUDA code was compiled using the NVIDIA
CUDA Compiler (NVCC) to generate the device code that is launched
from the host CPU.

Table 1: Experimental Architectures.

Name

CPU

GPU

archi Cores MHz L2 archi SM Cores MHz
lxpara Xeon 5410 8 1998 6144KB GT520 1 48 1620
lxphd IntelE8400 2 1998 6144KB GT520 1 48 1620

linuxlab 2 DuoCPU 2 1200 2048KB G 520 1 48 1620
brahma Xeon(TM) 4 3065 512KB GT520 1 48 1620

13

4.3. Performance Evaluation
For all the measurements that are performed on the two-core (such as
linux and lxphd) machines, we follow the common practice of
increasing the input-data size to evaluate the behaviour consistency of
the hMap skeleton with our performance cost model. While in the case
of using machines with an eight-core processor (such as lxpara), all
programs are measured with a fixed data size on 1,2,3,4,5,6, and 7
cores together with a single GPU device. We measure the runtimes for
the hMap skeleton implementation, with a fixed data size of 1500 x
1500 for the input matrices, and 80,000 elements of Fibonacci
(1,000,000).

4.3.1. Single multicore/GPU Node Results
The single-node experiments have been carried out our on linux lab,
lxphd, and lxpara as single nodes.
Table 2 and 3 show the hMap runtime for matrix multiplication and
Fibonacci on linux lab and lxphd respectively. The measurements
report the runtime on 1 core, GPU, GPU plus 1 core, and show the
percentage improvement of hMap using the CM2 cost model. The
hMap Fibonacci has an improvement of 95% over the sequential time
and improvement of 4% over the GPU time on linux lab and lxphd
using CM2 , while the hMap matrix multiplication has an
improvement of 68% over the sequential time on both linux lab and
lxphd, and improvement of 32% on linux lab and 20% over the GPU
time on lxphd.

14

Table 2: 1 Core hMap Runtimes (linux lab).

Data
size

Run-Time (s)
1 Core+GPU

Improvement%
1 Core GPU 1 Core+GPU 1 Core GPU

800x800 2.31 1.40 1.32 42% 5%
900x900 3.30 1.77 1.54 53% 12%

1000x1000 4.52 2.09 1.80 60% 13%
1100x1100 6.02 2.73 2.12 64% 22%
1200x1200 7.82 3.26 2.54 68% 22%
1300x1300 9.94 4.29 3.19 67% 25%
1400x1400 12.41 5.37 4.00 67% 25%
1500x1500 15.26 7.23 4.91 67% 32%

(a) matrix multiplication

Data
size

Run-Time (s)
1 Core+GPU

Improvement%
1 Core GPU 1 Core+GPU 1 Core GPU

1000 3.36 0.19 0.17 94% 10%
2000 6.77 0.34 0.32 95% 5%
5000 17.02 0.79 0.75 95% 5%

10000 34.17 1.53 1.47 95% 3%
20000 67.93 3.06 2.91 95% 4%
30000 103.30 4.55 4.39 95% 3%
40000 137.08 6.071 5.79 95% 4%
50000 170.80 7.55 7.24 95% 4%
60000 207.33 9.05 8.69 95% 4%
70000 243.79 10.51 10.12 95% 3%
80000 278.04 12.05 11.52 95% 4%

(b) Fibonacci

15

Table 3: 1 Core hMap Runtimes (lxphd).

Data
size

Run-Time (s)
1 Core+GPU

Improvement%
1 Core GPU 1 Core+GPU 1 Core GPU

800x800 4.28 1.47 1.41 67% 4%
900x900 6.09 1.84 1.66 72% 9%

1000x1000 8.37 2.25 1.98 76% 12%
1100x1100 11.12 2.88 2.36 78% 18%
1200x1200 14.43 3.49 3.07 78% 12%
1300x1300 18.34 4.46 3.90 78% 12%
1400x1400 22.91 5.79 4.88 78% 12%
1500x1500 28.25 7.61 6.02 78% 20%

(a) matrix multiplication

Data
size

Run-Time (s)
1 Core+GPU

Improvement%
1 Core GPU 1

Core+GPU
1 Core GPU

1000 3.27 0.20 0.19 94% 5%
2000 6.53 0.36 0.34 94% 5%
5000 16.36 0.79 0.77 95% 2%

10000 32.75 1.55 1.48 95% 4%
20000 65.47 3.07 2.93 95% 4%
30000 98.13 4.55 4.39 95% 3%
40000 130.97 6.07 5.77 95% 4%
50000 163.57 7.53 7.22 95% 4%
60000 196.44 9.06 8.67 95% 4%
70000 229.18 10.55 10.06 95% 4%
80000 261.77 12.00 11.52 95% 4%

(b) Fibonacci

Table 4 shows the runtime of matrix multiplication with data size of
1500 x 1500 and Fibonacci with data size 80,000 elements with a
value of 1,000,000 using hMap on lxpara. The measurements show

16

that the hMap Fibonacci has improvement of 77% over 8 cores, while
the hMap matrix multiplication shows that there is no improvement
after 6 cores. The parallel performance is measured as the absolute
speedup of using both the GPU device and the multiple cores within a
single machine. Here the experiments have been carried out on linux,
lxphd, and lxpara machines as single nodes.

Table 4: Multiple Core hMap Runtimes (lxpara).

Data
size

Run-Time (s)
1 Core+GPU

Improvement%
Cores GPU (Core-1)+GPU Cores GPU

1 19.60 7.26 7.26 62% 0%
2 9.82 7.26 5.31 45% 26%
3 6.55 7.26 4.20 35% 42%
4 4.93 7.26 3.48 29% 52%
5 3.94 7.26 3.09 21% 57%
6 3.29 7.26 2.92 11% 59%
7 2.89 7.26 2.84 1% 60%
8 2.54 7.26 2.78 -9% 61%

(a) matrix multiplication

Data
size

Run-Time (s)
1 Core+GPU

Improvement%
Cores GPU (Core-1)+GPU Cores GPU

1 344.37 12.03 12.03 96% 0%
2 172.01 12.03 11.60 93% 3%
3 114.85 12.03 11.28 90% 6%
4 86.06 12.03 10.90 87% 9%
5 68.99 12.03 10.59 84% 11%
6 57.43 12.03 10.27 82% 14%
7 49.26 12.03 9.96 79% 17%
8 43.09 12.03 9.69 77% 19%

(b) Fibonacci

17

Figures 1 and 2 show the absolute speedup achieved for the Fibonacci
and matrix multiplication programs with different input data sizes on
the two-core linux and lxphd machines respectively. The graphs in
Figures 1 and 2 compare the absolute speedup curve for one CPU-core
plus single GPU implementation with the curve for GPU
implementation.

A - Matrix Multiplication (linux-lab)

B - Fibonacci (linux-lab)

Figure 1: hMap Absolute Speedup on (linux lab)

18

Although the computing capability of GPU is relatively large
compared with the computational strength of a single CPU-core,
results show that using CPU-cores together with a GPU can deliver an
expected and acceptable speedups on both machines.

A - Matrix Multiplication (lxphd)

B - Fibonacci (lxphd)

Figure 2: hMap Absolute Speedup on (lxphd)

19

Our results also suggest that using the performance cost model for
determining granularity and data placement on different
heterogeneous architectures can provide a good load balance for data
distribution between CPU-cores and a GPU. This is reflected in the
speedup graphs where the curves are broadly similar for both
programs with different input data size on different parallel
heterogeneous architectures. Next, to investigate the impact of the
placement strategy on parallel performance of a varying number of
CPU-cores with a single GPU, the experiments have been run with the
Fibonacci and matrix multiplication programs on a machine with eight
CPU-cores (lxpara). Figure 3 compares the absolute speedups of both
Fibonacci and matrix multiplication programs on only CPU-cores and
GPU, and CPU-core+GPU of the lxpara machine. This shows that in
both programs a good performance has been obtained as anticipated.
 Firstly, the results presented in Figure 3 are consistent with others
that obtained for both programs on the linux and lxphd machines,
where the speedup is increased by using one CPU-core plus the GPU.
 Secondly, we have obtained almost linear speedup with parallel
efficiency of about 99% in both programs on CPU-cores. However, in
the matrix multiplication program the speedup has a slight degradation
to 95% parallel efficiency after six cores due to decreasing the chunk
size. The results show that our skeleton delivers 28x from the GPU
compared to a single CPU-core in the Fibonacci program, while we
report nearly 2.8x speedup over a CPU-core by using a GPU in the
matrix multiplication application. The variation in speedup between
programs is due to the GPU-HWSkel-based parallel algorithm used for
each program. Since the major problem with GPU implementations
which affects the performance efficiency is the size of data being
transferred between CPU and GPU, the algorithm requires too much
data communication, which in turn increases the CPU/GPU
communication overhead. Therefore, it is obvious that the algorithm
for matrix multiplication is more suitable for multicore processors

20

than a GPU implementation, while the Fibonacci program makes a
good GPU program.

A- Matrix Multiplication (lxpara)

B - Fibonacci (lxpara)

Figure 3: hMap Absolute Speedup on (lxpara)

21

4.3.2. Clusters of multicore/GPU Nodes Results
We evaluate the performance of an early version our cost model and
its effect on our hMap heterogeneous skeletons on different
combinations of the architectures outlined in Section 4.2. Figure 4
plots the speedups for different configurations with different
processing elements calculating Fibonacci(1000000) 1500,000 times.
The graph compares the speedups of three different kinds of
computing units (i.e. CPU-cores, GPU-device, and GPU-device plus
CPU-cores) on different numbers of given machines. Figure 4 shows
that the results are consistent with those that were presented in Section
4.3.1. However, the performance of our hMap skeleton has been
improved by exploiting the CPU-cores along with GPU in each host
node. We suggest once again that our performance cost model has
provided a good strategy of data placement for heterogeneous
architectures. The graph shows that the implementation of our hMap
skeleton can deliver good scalability, where the upper speedup curve
shows improved performance results for using our cost model for data
placement between the heterogeneous nodes as well as within each
node between multiple cores and GPU.

Figure 4: Speedups for the hMap on a Heterogeneous Cluster

22

5. Conclusions and Future Work
In this paper, a new performance cost model has been presented for
heterogeneous integrated multicore/GPU systems. The purpose of the
new cost model is to balance the workload distribution between the
nodes on heterogeneous cluster as well as between multiple cores and
GPU device inside each node in cluster. Our cost model is viewed as
two-phase, the Single-Node phase guides workload distribution across
a CPU core and a GPU using the performance ratio between the CPU
and GPU in the integrated multicore/GPU computing node, and the
Multi-Node phase balances the distribution of workload among the
nodes on heterogeneous integrated multicore/GPU cluster. In general,
we focus on predicting the runtime of the application code on the GPU
and use an architectural performance cost model for measuring the
processing strength of CPU to calculate the performance ratio. In
summary, our experimental results show that using multiple cores
together with a GPU in the same host with our skeleton and cost
model can deliver good performance either on a single node or on
multiple node architecture. Our work has a number of limitations,
which we propose to address in future work:

 As noted above, our cost models do not take account of
communication costs. We will explore how our simple notion
of strength can be extended to account for communication
characteristics.

 Our library, being based on CUDA, is NVIDIA specific. We
will modify our library to use the OpenCL standard.

References
1. K. Armih. Toward Optimised Skeletons for Heterogeneous

Parallel Architecture with Performance Cost Model. PhD
thesis, Heriot Watt University, UK, 2013.

2. K. Armih, G. Michaelson, and P. Trinder. Cache size in a cost
model for heterogeneous skeletons. In Proceedings of the fifth
international workshop on High-level parallel programming

23

and applications, HLPP ’11, pages 3–10, New York, USA,
2011.

3. S. Gupta. Performance Analysis of GPU compared to Single-
core and Multi-core CPU for Natural Language Applications.
IJACSA-International Journal of Advanced Computer Science
and applications, pages 50–53, 2011.

4. D. B. Kirk and W.-m. W. Hwu. Programming Massively
Parallel Processors: A Hands-on Approach. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1st edition, 2010.

5. C.-K. Luk, S. Hong, and H. Kim. Qilin: exploiting parallelism
on heterogeneous multiprocessors with adaptive mapping. In
Proceedings of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture, pages 45–55, New York,
USA, 2009.

6. Y. Ogata, T. Endo, N. Maruyama, and S. Matsuoka. An
efficient, model-based CPU-GPU heterogeneous FFT library.
In Parallel and Distributed Processing. IEEE International
Symposium on, 2008.

7. E. Wu and Y. Liu. Emerging technology about GPGPU. In
IEEE Asia-Pacific Conference on Circuits and Systems, 2008.

8. C. Yang, F.Wang, Y. Du, J. Chen, J. Liu, H. Yi, and K. Lu.
Adaptive optimization for petascale heterogeneous cpu/gpu
computing. In Proceedings of the 2010 IEEE International
Conference on Cluster Computing, CLUSTER ’10, pages 19–
28, Washington, USA, 2010.

