

57

Sematic of Parallel Primitive Haskell
Programming Language

Dr. Mustafa Kh. Aswad
Department of Computer Engineering & IT
Subratha University, Subratha, Libya
Email: mustafaasawd@gmail.com

Abstract

Nowadays, heterogeneous multi-core has become the mean-stream
computer architecture. It emerging hundreds of cores and combining
accelerators like GPUs on traditional chip. Programming software
models need to exploit all the resources at the hand of a programmer
with minimum efforts. This paper describes the Semitics of parallel
primitives of Haskell Programming Language. Primitives are
exploiting the underlying architecture resources. New primitive added
to a programming language we need to prove its expected behavior.
This paper specified the expected behaviors of the constructs by
Haskell functions, achieving an executable specification. We have
formulated several properties as Haskell predicates and used
Quickcheck to check them on random input. The three basic
properties represent sanity checks of the semantics. Two proposed
implementation relevant properties did not hold, and counter examples
extracted from Quickcheck identified diffusion of sparks to be the
problem. In the implementation, we avoided this problem by resetting
the boundaries after one fishing stage. The final property, checked
with Quickcheck, shows that with this modification, the desired
property holds.

58

1. Introduction
 The introduction of multi-core processors has renewed interest in
parallel functional programming and there are now number of parallel
programing models that explore the advantages of a functional
language for writing explicitly parallel code or implicitly paralellizing
code written in a pure functional language [2]. There are more
developments in the areas of softwares such as transactional memory
and nested data parallelism [6] [11].
Parallel programs are written to gain performance. This goal is
achieved by exploit the potential of a real parallel computing resource
like a multi-core processor [8]. Concurrency is a programming
techniques that allows us to model computations as hypothetical
independent activities. Those computations can communicate and
synchronize [10]. This paper describes in Section [2.1] number of
parallel programming model include explicit, semi-explicit and
implicit parallel programs. It will know that fully implicit parallelism
leads to very small tasks which con not hide the over hide
communications. Also the explicit parallel program is too difficult for
non-experience programmer. This paper propose the semi-explicit
parallel programing as good approach for writing parallel
programming, and easy to control the granularity of parallel tasks on
modern operating systems and processors. Haskell function language
is a semi-explicit parallel programming model constrains performance
and simplicity. It is particularly fox on formal semantics for the new
constructs.

2. Background
This section presents an introduction to number of parallel
programming models. It in mainly constrain on the techniques for
writing concurrent parallel programs. The parallel program is written
gain performance. In other-words it written to reduce the execution
time. Therefore, we need to exploit the potential of a real parallel
architecture platform like multi-core cores.

59

2.1. Parallel Applications
The development of parallel programs increases the number of
challenges that already exist in developing sequential programs. A
parallel programs aims to achieve performance cross different parallel
platform without changes and hide the latency between cores and I/O
operations to disks and network devices. A parallel program should
remain easy to constructs.
As mentioned the new mainstream microprocessors are move towards
hundreds of cores or more in one platform. To achieve performance
from each individual core, it is necessary to split a given work into
tasks and distribute these tasks across multiple processing cores.
Splitting a work to number of tasks requires a program language
capable to automatically parallelize the sequential code or semi-
explicit or explicitly parallel program which is then scheduled onto
multiple cores by the operating systems. Haskell function language is
semi-explicit parallel programming.

2.2. Haskell Functional Language
Haskell Functional Language represents code in mathematical
function sense. One of its features is laziness which means functions
don't evaluate their arguments. This feature helps to write parallel
code very easy in Haskell functional language.
Exploiting Parallelism in Haskell, in general every expression in most
functional language can be evaluated in parallel. This can be
automatically exploited. But exploiting all parallelism in a program
has side effects. It creates too many small tasks. Which cannot be
efficiently scheduled and parallelism is limited by fundamental data
dependencies in the source program. Haskell provides a mechanism to
allow the user to control the granularity of parallelism by indicating
what computations may be usefully carried out in parallel. This kind
of parallelism calls Semi-Explicit Parallelism. It provides two
primitives par and pseq [12].

60

 par :: a -> b -> b
 pseq :: a -> b -> b

Fig 1: par and pseq Function

The function par indicates to the Glassgow Haskell Compiler (GHC)
run-time system that it may be beneficial to evaluate the first
argument (a) in parallel with the second argument (b). It returns the
second argument as result. The notion of a lazy future provided by
Haskell language allow the runtime system to create spark for Frost
arguments (a) which has the potential to be executed on a different
thread from the parent thread. But not necessarily create a thread to
compute the value of the expression (a).

Fig 2: Semi-explicit Parallel Haskell.

Load balance in Haskell is a mechanism used to distribute the work
among the participated cores. Haskell uses a work stealing algorithm
to distribute a work. Within a multicore it will search for a spark by
directly accessing spark pool [4]. A spark is described in the Section
[2.2] in a network it sends a fish message searching for work. It is a
dynamic mechanism for automatically distributing work and data on a
cluster as shown in Figure 3.

61

Fig 3: Workstealing Algorithm in Parallel Haskell.

2.3. OpenMP
OpenMP uses an imperative parallel programming style [4]. It is a
portable programming interface for shared memory multithreaded
programming using C/C++ and FORTRAN as host languages.
OpenMP consists of a set of compiler directives, library routines, and
environment variables that affect run-time behavior. OpenMP uses a
fork-join threading model; a master thread forks a task into a number
of worker threads that share the work and then wait until they finish to
join before continuing. OpenMP is a scalable model that gives
programmers a simple and flexible interface for developing parallel
applications for a range of parallel architectures. The model is
identified as easy to use and portable. The programmer does not need
to put significant effort into parallelizing the existing sequential
program. However, this is not always the case, as the multicore
resources are not fully utilized if the programmer is not expert in
parallel programming.

62

2.4. Message Passing Interface (MPI)
 A standard defines an interface for sending and receiving messages
[13]. Specifically the interface includes point-to-point communication
functions, send operations performing a data transfer between two
concurrently executing tasks, and receive operations to accept data
from another processor into program memory space. It also has other
operations, such as broadcast barriers and reduction that explicitly
involve a group of processors. It is heavily used in high performance
computing and, with considerable tuning, delivers an acceptable
performance across a wide range of architectures. MPI is a MIMD
style model. However a shared-memory style can be simulated using
send and receive messages of MPI. MPI does not provide the dynamic
creation or deletion of processes during a program runtime (the total
number of processes is fixed [9].

3. Constructs Semantics
The new constructs are not prescriptive: rather than specifying a single
PE for a task, they identify sets of PEs within the communication
hierarchy of the architecture. We present a simple Haskell
specification of the sets of PEs that each construct identifies when
executed on any PE of participating PEs. We first need some
mechanism specifying paths and distances in the tree hierarchy.

Fig 4: An Example of Hierarchical Architecture.

63

3.1. Distance Function
In order to illustrate how the distance function is working, we
define a binary tree (Tree t) structure representing an underlying
parallel platform (e.g. the one shown in Figure(4). The definition of
the tree data structure is as follows:

data Tree a = Node a (Tree a) (Tree a)

| Leaf {pId ::Int} deriving (Eq, Show)

A tree is a leaf with a PE Id as value, or a node represents network
possibly parametrized with information such as latency, leaves
represents PEs. A node has a value and two branches, each of which is
a subtree.
The function distance t p1 p2 calculates the distance, defined as the
number of steps to the nearest common node in the hierarchy between
two leaves in the architecture hierarchy. The function takes a tree t
representing the architecture and two leaves p1 and p2 as input and
returns the distance between the two leaves as an integer.

64

distance ::Tree Int ->Int ->Int ->Int
distance t p1 p2 = d1+d2
 where

pathTo p1 = path t p1
pathTo p2 = path t p2
comNodes = length (prefixOf pathTo p1 pathTo p2)
d1 = length pathTop1 - comNodes
d2 = length pathTop2 - comNodes

path :: Tree Int ->Int -> [Int]
path (Leaf p) s
 | p==s = [s]
 | otherwise = []
path (Node v t u) s
 | v == s = [v]
 | left== [] && right == [] = []
 | left /= [] = [v] ++ left
 | right /= [] = [v] ++ right
 where
 left = path t s
 right = path u s

Fig 5: Distance Function

The definition of the distance function uses additional auxiliary
functions, path shown in Figure 5. The call path (Node v t u) p
calculates the path to leaf p from the root of the tree represented as a
list. It takes a tree (Node v t u) and leaf p and returns list of nodes that
lead to the leaf p. The complete Haskell program defining all auxiliary
functions, e.g. for simplicity, we use a tree of integers shown in Figure
4 to demonstrate the constructs semantics. Squares in the tree
represent PEs in the hierarchy (Leaf). Circles in the tree represent the
networks connecting Pes or sub-networks (Node).

65

As an example, if we need to compute a distance between Leaf 15 and
Leaf 20, we proceed by the following steps.

1) Path to Leaf 15 pathTop1 = [1,3,8,6,15]

2) Path to Leaf 20 pathTop2 =[1,3,9,10,20]

3) Length of the longest common prefix of pathTop1 and pathTop2
 comNodes = length [1,3] =2

Node 3 is the nearest common node between Leaf 15 and Node 20

4) Length of path to Leaf 15 from nearest common Node d1
= length (pathTop1) - length (comNodes) = 3

5) Length of path to Leaf 20 from nearest common Node =) d2
= length(pathTop2) - length(comNodes) = 3

6) The distance between Leaf 15 and Leaf 20 = d1 + d2 = 6, is
the sum of steps moving from one leaf to the nearest
common parent and down to other leaf.

setparDist :: Tree Int ->Int ->Int ->Int -> [Int]
setparDist t m u p
 | ((m<0) || (u<0)) = []
 | ((m==0) && (u==0))= [p]
 | (u > (length (pp)-1)&& (m==0)) =(rLeaf (t))
 | ((m==u)||(u > (length (pp)-1)))
 = exact (subexact) p
 | m==0 = [p]++setPes
 | otherwise = setPes
 where
 pp = path t p
commonnu = last (take (length(pp) - u) pp)
commonnm =last (take (length(pp) - m) pp)
subu=subTree t commonnu

66

subexact= subTree t commonnm
complementtree = (complementTreesubu
commonnm)
setPes= filter (/= commonnm) (rLeaf
 (complementtree))

subTree ::Tree Int ->Int -> (Tree Int)
subTree (Leaf p) s =EmptyTree
subTree (Node v t u) s
 | v == s = (Node v t u)
 | left== EmptyTree&& right == EmptyTree
 = EmptyTree
 | left /= EmptyTree = left
 | right /=EmptyTree =right
 where
 left = subTree t s
 right = subTree u s

complementTree :: Tree Int ->Int -> Tree Int
complementTree (Leaf p1) s = (Leaf p1)
complementTree (Node v l EmptyTree) s
 | v==s = EmptyTree
 | otherwise =(Node v (complementTree l s)
EmptyTree)
complementTree (Node v t u) s
 | v==s = EmptyTree
 | otherwise = (Node v
 (complementTree t s)
 (complementTree u s))

Fig 6: setparDist Locations Function

67

3.2. setparDist Function
The most basic primitive we propose is the parDist primitive. We
therefore start by defining its semantics in terms of the possible
locations defined by it. A setparDist t m u p specifies the set of PEs
on which a parDist m u task may be executed from PEp in an
architecture t. It takes an architecture tree t, a minimum bound m,
maximum bound u, and a leaf p, the current location, as input and
returns a list of all possible PEs (Figur [6]). For example, if we need to
generate sparks intended to be executed between levels 1 and 3 from
Leaf 20 of the tree shown in Figure (4), we perform the following:

1) Calculate path to Leaf 20 =) pathTop = [1,3,9,10,20].

2) Calculate the common node distant by u levels from Leaf 20
common u = last (take (5 - 3) [1,3,9,10,20]) 3.

3) Calculate the common node that is m levels from Leaf 20
common m= last (take (5 - 1) [1,3,9,10,20]) 10.

4) Calculate the subtree of the common u leaf 3 subtree u =
(Node 3 (Node 8 (Node 6 (Leaf pId = 15)(Leaf pId = 16)) (Node 7
(Leaf pId = 17) (Leaf pId = 18))) (Node 9 (Leaf pId = 19) (Node
10 (Leaf pId = 20)(Leaf pId = 21))))

5) Calculate the complementary tree of the common node 10. The
complementary tree is the original tree excluding the subtree of a
given node. In our case, we calculate the complement for subtree
u of node 10. complementtree = Node 3 (Node 8 (Node 6 (Leaf
pId = 15) (Leaf pId = 16)) (Node 7 (Leaf pId = 17) (Leaf pId =
18))) (Node 9 (Leaf pId = 19))

6) Finally calculate the leaves of the complementtree subtree
setPes = [15,16,17,18,19].

68

 setparBound ::Tree a ->Int -> a -> [a]
 setparBound t n p = setparDist t 0 n p

Fig 7: setparBound Locations Function

3.3. setparBound Function
As mentioned in the previous section, parDist is the most basic
primitive. We can use it to define the other constructs. A setparBound
t n p (Figure 7) specifies the set of PEs that tasks generated by a
parBound n may be executed on, from P Ep in architecture t. For
example if we need to generate sparks bounded by two levels from
leaf 11 of the tree shown in Figure 4, we just call setparDist with the
following parameters t 0 2 11, where t is the tree. The result is [11, 12,
13, 14], a list of leaves with a distance of at most 2 in the architecture
tree (t)

3.4. setparAtLeast Function
A parAtLeast is similar to parBound, as it takes an additional integer
parameter specifying the minimum distance in the communication
hierarchy that the computation may be communicated. Therefore, it
can be defined in a similar way, as shown in Figure 8.

Fig 8: setparAtLeast Locations Function

So, if we need to generate sparks intended to be executed at least two
levels from leaf 11 of the tree shown in Figure 4, we just call
setparDist t 2 maxLevel 1 1, where t is the tree and maxLevel is the

setparAtLeast::(Ord a, Show a)=>Tree a->Int -> a -> [a]
setparAtLeast t n p = setdFun t n maxLevel p
 where
 maxLevel = 3

69

maximum distance that sparks can be sent within the architecture
hierarchy. In this example, the result is [15, 16, 17, 18, 19, 20, 21].

3.5. Construct Properties Test
This section presents implementation-relevant properties that the
architecture-aware semantics should satisfy. These properties are
expressed as Boolean functions in Haskell and validated using
QuickCheck [5] that is the properties are written as Haskell functions
and can be automatically checked on either random input or with
custom test data generators. Two types of properties are tested: the
basic properties and specialized properties.

1) Basic Properties: Let 푃 be the set of 푃퐸푠 which are the leaves of
the tree representing a given hierarchical architecture. The
domain H is the domain of all possible tree hierarchies. The
domain P is the domain of all possible processor elements.
a. Basic property one. For any processing element 푝 ∈ 푃; the

only possible placement of a bounded spark withupper and
lower bounds of 0 and 0 is the 푝 itself. Formally, this is
written as:

 ∀ℎ ∈ 퐻; ∀푝 ∈ 푃setparDist h 0 0 p = {p}

b. Basic property two. Let path p be a function that returns the
longest path to the PE from the root of the tree hierarchy.
Let rLeaf h be a function that returns all processor elements
(PEs) in the tree hierarchy. The path and rLeaf functions are
described in Section [3.1]. For 푝 ∈ 푃 andℎ ∈ 퐻, the set of
PEs returned by calling the setparDist h 0 (length (path h p))
p function is equal to the set of all PEs in the hierarchy, as
returned rLeaf h.

 ∀ ℎ ∈ 퐻 ; ∀푝 ∈ 푃setparDist h 0 (length (path h p)) p = rLeaf h

70

c. Basic property three. If the upper bound u is less than 0 or
lower bound m is greater than the longest path to the PE
from root of the tree hierarchy then the set of PEs returned
by calling setparDist h m u p function is an empty set of
PEs.

 setparDist h m u p = {} ∀ h Z

The above three basic properties can be considered sanity checks
of the semantics. All basic properties have passed Quickcheck
testing using one hundred randomly generated inputs, each with a
randomly generated tree hierarchy.

2) Specialised Properties: The proposed architecture-aware model
exposes the tree hierarchy to the programmer through the parDist
primitive. The parDist primitive provides a mechanism to spark
tasks that can be executed in certain levels of the architecture
hierarchy. We believe, for the implementation, it is important that
these sparks do not leave their neighborhood, where neighborhood
is the set of PEs specified by parDist primitive. Otherwise the
bounded spark may diffuse to arbitrary locations after several
steps of fishing (work stealing, as outlined in Section [2.2]. We
define the following property to formally specify and check this
property.

a. Specialised proposed property one. This property reflects the
initial intention of the bounded parDist. For 푝 ∈ 푃 and
ℎ ∈ 퐻, the set of PEs returned by setparDist h 0 u p is equal
to the set of PEs returned by setparDist h 0 u p’, where p’ is a
possible location after one step of fishing. The aim is to
guarantee that if the spark is fished again from p’ it will be
executed in the same neighborhood specified by the original p.

71

 ∀ℎ ∈ 퐻; ∀푝; 푝′ ∈ 푃; 푢 2 푍 ; 푝′ ∈ (setparDist h 0 u p))

 setparDist h 0 u p' = setparDist h 0 u p

On closer examination, this property fails under the
quickcheck test. In the case of an unbalanced tree hierarchy,
the result of setparDist h 0 u p may return a subset of the set
returned by setparDist h 0 u p.

Fig 9: Tree Example of Specialized Proposed Property One

For example, in the tree hierarchy shown in Figure 9, if PE (B)
launches a spark with boundaries 0 and 2, then any PE in the outer
circle can fish the spark. In particular, it can be fished by PE (D). In
second step the spark can be fished only from PEs in the inner circle.
That is why the property fails. However, this is not always true,
illustrated in the next proposed property.

b. Specialized proposed property two. For 푝 ∈ 푃 andℎ ∈ 퐻, the
set of PEs returned by setparDist h 0 u p’ is a subset of the set
of PEs returned by setparDist h 0 u p.

72

∀ ℎ ∈ 퐻 , ∀ 푝 , 푝 ∈ 푃 , 푢 ∈ 푍 ∈ 푝 ∈
(푠푒푡푝푎푟퐷푖푠푡 ℎ 0 푢 푝)) =>

푠푒푡푝푎푟퐷푖푠푡 ℎ 0 푢 푝 ≤ 푠푒푡푝푎푟퐷푖푠푡 ℎ 0 푢 푝

Fig 10: Tree Example of Specialized Proposed Property Two.

The property also fails the quickCheck test, because of
unbalanced tree hierarchies. In the second step, the spark may
be fished by a PE which is not one of the elements of the
original PE neighborhood. For example, in the tree hierarchy
showed in Figure 10, if PE (B) launches a spark with
boundaries 0 and 2, then any PE in the blue circle can fish the
spark. In particular, it can be fished by PE(C). In a second step,
the spark can be fished from PE (C) by any PE in the red
circle. In particular, it can be fished by PE (A), which is
outside the original neighborhood. We call this behavior of the
fishing mechanism diffusion of sparks. In the implementation,
we must prevent this scenario from happening. We achieve
this by resetting the boundaries of the spark to be 0 and 0, after
the first fishing stage. This forces evaluation of the spark on
the initial target PE, and thus within the neighborhood
specified by the spark.

73

c. Specialized proposed property two. For p 2 P and h 2 H, after
fishing a spark from p to p', which is within the bound u and
after resetting the bound u for the spark to 1, this spark can
only be fished by a p inside the original neighborhood of p.
The set of PEs returned by setparDist h 0 1 p’ is a subset of
the set of PEs returned by setparDist h 0 u p.

∀ℎ ∈ 퐻; ∀푝; 푝 ∈ 푃; 푢 ∈ 푍; 푝 ∈

(푠푒푡푝푎푟퐷푖푠푡 ℎ 0 푢 푝))
푠푒푡푝푎푟퐷푖푠푡 ℎ 0 1 푝′푠푒푡푝푎푟퐷푖푠푡 ℎ 0 푢 푝

This property passes the quickCheck and guarantees that there is no
diffusion of sparks, i.e. sparks always remain in the neighborhood
specified by the original parDist.

4. Related Work
 Many of the semantics primitives prove described in this section are
similar to the semantics prove presented in this paper. Berry and
el.[3]defined a transitional semantics of a simple language to preserve
the expected behavior of sequential programs. Mosses and el. [7] has
investigated the sequential behavior of ML action semantics and
extended the language with concurrency primitives.

5. Conclusion
We have presented the semantics for the architecture aware constructs,
specifying the set of possible locations when providing boundaries to
the sparks. We have specified the expected behavior of the constructs
by Haskell functions, achieving an executable specification. We have
formulated several properties as Haskell predicates and used
Quickcheck to check them on random input. The three basic
properties represent sanity checks of the semantics. Two proposed
implementation relevant properties did not hold, and counterexamples

74

extracted from Quickcheck identified diffusion of sparks to be the
problem. In the implementation, we avoided this problem by resetting
the boundaries after one fishing stage. The final property, checked
with Quickcheck, shows that with this modification, the desired
property holds.

References
1. ARCHIBALD, B., MAIER, P., STEWART, R., TRINDER, P.,

ANDDE BEULE, J. Towards generic scalable parallel
combinatorial search .In Proceedings of the International
Workshop on Parallel Symbolic Computation (New York, NY,
USA, 2017), PASCO 2017, ACM, pp. 6:1–6:10.

2. BARROSO, L. A., GHARACHORLOO, K., MCNAMARA,
R., NOWATZYK, A., QADEER, S., SANO, B., SMITH, S.,
STETS, R., AND VERGHESE, B. Piranha: A scalable
architecture based on single-chip multiprocessing. SIGARCH
Comput. Archit. News 28, 2(May 2000), 282–293.

3. BERRY, D., MILNER, R., AND TURNER, D. A Semantics
for ML Concurrency Primitives. 2 1992, pp. 119–129.

4. CHAPMAN, B., JOST, G., AND RUUD, V. Using OpenMP.
Portable Shared Memory Parallel Programming. No. ISBN-13:
978-0-262-53302-7. The MIT Press Cambridge,
Massachusetts, London, England,2008.

5. CLAESSEN, K., AND HUGHES, J. Quick Check: A
Lightweight Tool for Random Testing of Haskell Programs. In
Acmsigplan notices (2000), vol. 35, ACM, pp. 268–279.

6. DAMRON, P., FEDOROVA, A., LEV, Y., LUCHANGCO,
V., MOIR, M., AND NUSSBAUM, D. Hybrid transactional
memory. SIGPLAN Not. 41,11 (Oct. 2006), 336–346.

7. MOSSES, P., AND MUSICANTE, M. An action semantics
for ml concurrency primitives. BRICS Report Series 1, 20
(1994).

75

8. SKILLICORN, D. B., AND TALIA, D. Models and languages
for parallel computation. ACM Comput. Surv. 30, 2 (June
1998), 123–169.

9. SNIR, M., OTTO, S., HUSS-LEDERMAN, S., WALKER, D.,
AND DONGARR,J. MPI: The Complete Reference , vol. 1.
The MIT Press, 1998.MIT, Cambridge.

10. SUTTER, H., AND LARUS, J. Software and the concurrency
revolution. Queue 3, 7 (Sept. 2005), 54–62.

11. TARDITI, D., PURI, S., AND OGLESBY, J. Accelerator:
Using data parallelism to program gpus for general-purpose
uses. SIGOPS Oper. Syst. Rev. 40, 5 (Oct. 2006), 325–335.

12. TRINDER, P. W., HAMMOND, K., MATTSON, JR., J. S.,
PARTRIDGE,A. S., AND PEYTON JONES, S. L. Gum: A
portable parallel implementation of haskell. SIGPLAN Not.
31, 5 (May 1996), 79–88.

13. WALKER, D., AND DONGARRA, J. MPI: a Standard
Message Passing Interface. Supercomputer 12 (1996), pp. 56–
68. ASFRA BV.

