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Abstract 

Nowadays, heterogeneous multi-core has become the mean-stream 
computer architecture. It emerging hundreds of cores and combining 
accelerators like GPUs on traditional chip. Programming software  
models need to exploit all the resources at the hand of a programmer 
with minimum efforts. This paper describes the Semitics of parallel 
primitives of Haskell Programming Language. Primitives are 
exploiting the underlying architecture resources.  New primitive added 
to a programming language we need to prove its expected behavior. 
This paper specified the expected behaviors of the constructs by 
Haskell functions, achieving an executable specification. We have 
formulated several properties as Haskell predicates and used 
Quickcheck to check them on random input. The three basic 
properties represent sanity checks of the semantics. Two proposed 
implementation relevant properties did not hold, and counter examples 
extracted from Quickcheck identified diffusion of sparks to be the 
problem. In the implementation, we avoided this problem by resetting 
the boundaries after one fishing stage. The final property, checked 
with Quickcheck, shows that with this modification, the desired 
property holds. 
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1. Introduction 
 The introduction of multi-core processors has renewed interest in 
parallel functional programming and there are now number of parallel 
programing models that explore the advantages of a functional 
language for writing explicitly parallel code or implicitly paralellizing 
code written in a pure functional language [2]. There are more 
developments in the areas of softwares such as transactional memory 
and nested data parallelism [6] [11]. 
Parallel programs are written to gain performance. This goal is 
achieved by exploit the potential of a real parallel computing resource 
like a multi-core processor [8]. Concurrency is a programming 
techniques that allows us to model computations as hypothetical 
independent activities. Those computations can communicate and 
synchronize [10]. This paper describes in Section [2.1] number of 
parallel programming model include explicit, semi-explicit and 
implicit parallel programs. It will know that fully implicit parallelism 
leads to very small tasks which con not hide the over hide 
communications. Also the explicit parallel program is too difficult for 
non-experience programmer. This paper propose the semi-explicit 
parallel programing as good approach for writing parallel 
programming, and easy to  control the granularity of parallel tasks on 
modern operating systems and processors. Haskell function language 
is a semi-explicit parallel programming model constrains performance 
and simplicity. It is particularly fox on formal semantics for the new 
constructs. 

2.  Background 
This section presents an introduction to number of parallel 
programming models. It in mainly constrain on the techniques for 
writing concurrent parallel programs. The parallel program is written 
gain performance. In other-words it written to reduce the execution 
time. Therefore, we need to exploit the potential of a real parallel 
architecture platform like multi-core cores. 
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2.1.  Parallel Applications 
The development of parallel programs increases the number of 
challenges that already exist in developing sequential programs. A 
parallel programs aims to achieve performance cross different parallel 
platform without changes and hide the latency between cores and I/O 
operations to disks and network devices. A parallel program should 
remain easy to constructs.   
As mentioned the new mainstream microprocessors are move towards 
hundreds of cores or more in one platform. To achieve performance 
from each individual core, it is necessary to split a given work into 
tasks and distribute these tasks across multiple processing cores. 
Splitting a work to number of tasks requires a program language 
capable to automatically parallelize the sequential code or semi-
explicit or explicitly parallel program which is then scheduled onto 
multiple cores by the operating systems. Haskell function language is 
semi-explicit parallel programming.    

2.2.  Haskell  Functional  Language  
Haskell Functional Language represents code in mathematical 
function sense. One of its features is laziness which means functions 
don't evaluate their arguments.  This feature helps to write parallel 
code very easy in Haskell functional language. 
Exploiting Parallelism in Haskell, in general every expression in most 
functional language can be evaluated in parallel. This can be 
automatically exploited. But exploiting all parallelism in a program 
has side effects. It creates too many small tasks. Which cannot be 
efficiently scheduled and parallelism is limited by fundamental data 
dependencies in the source program. Haskell provides a mechanism to 
allow the user to control the granularity of parallelism by indicating 
what computations may be usefully carried out in parallel. This kind 
of parallelism calls Semi-Explicit Parallelism. It provides two 
primitives par  and  pseq [12]. 
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           par :: a -> b -> b 
           pseq :: a -> b -> b 

Fig 1: par and pseq Function 
 
The function par indicates to the Glassgow Haskell Compiler (GHC) 
run-time system that it may be beneficial to evaluate the first 
argument (a) in parallel with the second argument (b). It returns the 
second argument as result. The notion of a lazy future provided by  
Haskell language  allow the runtime system to create spark for Frost 
arguments   (a) which has the potential to be executed on a different 
thread from the parent thread. But not necessarily create a thread to 
compute the value of the expression (a). 

 

Fig 2: Semi-explicit Parallel Haskell. 

Load balance in Haskell is a mechanism used to distribute the work 
among the participated cores. Haskell uses a work stealing algorithm 
to distribute a work. Within a multicore it will search for a spark by 
directly accessing spark pool [4]. A spark is described in the Section 
[2.2] in a network it sends a fish message searching for work. It is a 
dynamic mechanism for automatically distributing work and data on a 
cluster as shown in Figure 3. 
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Fig 3:  Workstealing Algorithm in Parallel Haskell. 

2.3.  OpenMP 
OpenMP uses an imperative parallel programming style [4]. It is a 
portable programming interface for shared memory multithreaded 
programming using C/C++ and FORTRAN as host languages. 
OpenMP consists of a set of compiler directives, library routines, and 
environment variables that affect run-time behavior. OpenMP uses a 
fork-join threading model; a master thread forks  a task into a number 
of worker threads that share the work and then wait until they finish to  
join  before continuing. OpenMP is a scalable model that gives 
programmers a simple and flexible interface for developing parallel 
applications for a range of parallel architectures. The model is 
identified as easy to use and portable. The programmer does not need 
to put significant effort into parallelizing the existing sequential 
program. However, this is not always the case, as the multicore 
resources are not fully utilized if the programmer is not expert in 
parallel programming. 
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2.4.  Message Passing Interface (MPI) 
 A standard defines an interface for sending and receiving messages 
[13]. Specifically the interface includes point-to-point communication 
functions, send operations performing a data transfer between two 
concurrently executing tasks, and receive operations to accept data 
from another processor into program memory space. It also has other 
operations, such as broadcast barriers and reduction that explicitly 
involve a group of processors. It is heavily used in high performance 
computing and, with considerable tuning, delivers an acceptable 
performance across a wide range of architectures. MPI is a MIMD 
style model. However a shared-memory style can be simulated using 
send and receive messages of MPI. MPI does not provide the dynamic 
creation or deletion of processes during a program runtime (the total 
number of processes is fixed [9]. 

3. Constructs  Semantics 
The new constructs are not prescriptive: rather than specifying a single 
PE for a task, they identify sets of PEs within the communication 
hierarchy of the architecture. We present a simple Haskell 
specification of the sets of PEs that each construct identifies when 
executed on any PE of participating PEs. We first need some 
mechanism specifying paths and distances in the tree hierarchy. 
 

 

 

 

 

 

Fig 4: An Example of Hierarchical Architecture. 
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3.1. Distance  Function 
In order to  illustrate  how  the distance function is working,  we  
define a binary tree  (Tree t) structure  representing an underlying  
parallel platform ( e.g. the one shown in Figure(4). The definition of 
the tree data structure is as follows: 

 

data Tree a = Node a (Tree a) (Tree a) 

| Leaf {pId ::Int} deriving (Eq, Show) 
 

 

A tree is a leaf with a PE Id as value, or a node represents network 
possibly parametrized with information such as latency, leaves 
represents PEs. A node has a value and two branches, each of which is 
a subtree. 
The function distance t p1 p2 calculates the distance, defined as the 
number of steps to the nearest common node in the hierarchy between 
two leaves in the architecture hierarchy. The function takes a tree t 
representing the architecture and two leaves p1 and p2 as input and 
returns the distance between the two leaves as an integer. 
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distance ::Tree Int ->Int ->Int ->Int 
distance  t  p1  p2  =  d1+d2 
        where  

pathTo  p1 = path t  p1 
pathTo  p2 = path t  p2 
comNodes = length (prefixOf   pathTo p1 pathTo p2) 
d1 = length pathTop1 - comNodes 
d2 = length pathTop2 - comNodes 

path ::  Tree Int ->Int -> [Int]  
path (Leaf p ) s  
      | p==s = [s] 
      | otherwise = [] 
path  (Node v t u) s     
      | v == s =  [v] 
      | left== [] && right  == [] = [] 
      | left /= [] =   [v]  ++ left 
      | right  /= [] = [v] ++ right  
      where  
        left = path t s 
                right = path u s 

Fig 5:  Distance Function 

The definition of the distance function uses additional auxiliary 
functions, path shown in Figure 5. The call path (Node v t u) p 
calculates the path to leaf p from the root of the tree represented as a 
list. It takes a tree (Node v t u ) and leaf p and returns list of nodes that 
lead to the leaf p. The complete Haskell program defining all auxiliary 
functions, e.g. for simplicity, we use a tree of integers shown in Figure 
4 to demonstrate the constructs semantics. Squares in the tree 
represent PEs in the hierarchy (Leaf). Circles in the tree represent the 
networks connecting Pes or sub-networks (Node). 
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As an example, if we need to compute a distance between Leaf 15 and 
Leaf 20, we proceed by the following steps. 

1) Path to Leaf 15  pathTop1 = [1,3,8,6,15] 

2) Path to Leaf 20  pathTop2 =[1,3,9,10,20] 

3) Length of the longest common prefix of pathTop1 and pathTop2 
 comNodes = length [1,3] =2 

Node 3 is the nearest common node between Leaf 15 and Node 20 

4) Length  of  path  to  Leaf  15  from  nearest  common Node  d1 
= length (pathTop1) - length (comNodes) = 3 

5) Length of path to Leaf 20 from nearest common Node =) d2 
= length(pathTop2) - length(comNodes) = 3 

6) The distance between Leaf 15 and Leaf 20 = d1 + d2 = 6, is 
the sum of steps moving from one leaf to the nearest 
common parent and down to other leaf. 

setparDist :: Tree Int ->Int ->Int ->Int -> [Int] 
setparDist t m u p  
       | ((m<0) || (u<0)) = []  
       | ((m==0) && (u==0))= [p] 
       | (u > (length (pp)-1)&& (m==0)) =(rLeaf ( t))  
       | ((m==u)||(u > (length (pp)-1))) 
                      = exact ( subexact) p  
       | m==0 = [p]++setPes 
       | otherwise = setPes 
      where  
       pp = path  t p 
commonnu = last (take (length(pp) - u) pp) 
commonnm =last ( take (length(pp) - m) pp) 
subu=subTree t commonnu 
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subexact= subTree t commonnm 
complementtree = (complementTreesubu 
commonnm)  
setPes= filter (/= commonnm) (rLeaf 
                           (complementtree))  
 
subTree ::Tree Int ->Int -> ( Tree Int)  
subTree (Leaf  p) s =EmptyTree 
subTree (Node v t u) s     
    | v == s  = (Node v t u) 
    | left== EmptyTree&& right == EmptyTree 
                                 = EmptyTree 
    | left /= EmptyTree = left 
    | right  /=EmptyTree =right  
    where  
     left =    subTree t s 
     right =   subTree u s 
 
complementTree ::  Tree Int ->Int -> Tree Int 
complementTree (Leaf p1) s = (Leaf p1) 
complementTree  (Node v l EmptyTree ) s  
     | v==s = EmptyTree 
     | otherwise =(Node v (complementTree l s) 
EmptyTree) 
complementTree (Node v t u) s  
       | v==s = EmptyTree 
       | otherwise  = (Node v   
                      (complementTree t s)  
                                             (complementTree u s)) 

Fig 6: setparDist Locations Function 
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3.2.  setparDist  Function 
The most basic primitive we propose is the parDist primitive. We 
therefore start by defining its semantics in terms of the possible 
locations defined by it.  A setparDist t m u p specifies the set of PEs 
on which a  parDist m u task may be executed from PEp in an 
architecture t. It takes an architecture tree t,  a minimum bound  m, 
maximum  bound u, and  a leaf p, the current location,  as input and 
returns a list of all possible PEs (Figur [6]). For example, if we need to 
generate sparks intended to be executed between levels 1 and 3  from  
Leaf  20 of the  tree shown in Figure (4), we perform the following:  

1) Calculate path to Leaf 20 =) pathTop = [1,3,9,10,20]. 

2) Calculate the common node distant by u levels from Leaf 20 
common u = last (take (5 - 3) [1,3,9,10,20])  3. 

3) Calculate the common node that is m levels from Leaf 20 
common m= last (take (5 - 1) [1,3,9,10,20])  10. 

4) Calculate the subtree of the common u leaf 3  subtree u = 
(Node 3 (Node 8 (Node 6 (Leaf pId = 15)(Leaf pId = 16)) (Node 7 
(Leaf pId = 17) (Leaf pId = 18))) (Node 9 (Leaf pId = 19) (Node 
10 (Leaf pId = 20)(Leaf pId = 21)))) 

5) Calculate the complementary tree of the common node 10. The 
complementary tree is the original tree excluding the subtree of a 
given node. In our case, we calculate the complement for subtree 
u of node 10. complementtree = Node 3 (Node 8 (Node 6 (Leaf 
pId = 15) (Leaf pId = 16)) (Node 7 (Leaf pId = 17) (Leaf pId = 
18))) (Node 9 (Leaf pId = 19)) 

6) Finally calculate the leaves of the complementtree subtree 
setPes = [15,16,17,18,19]. 
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                     setparBound ::Tree a ->Int ->  a -> [a] 
                     setparBound t n p = setparDist t 0 n p 
 

Fig 7: setparBound Locations Function 

3.3.  setparBound Function 
As mentioned in the previous section, parDist is the most basic 
primitive. We can use it to define the other constructs. A setparBound 
t n p (Figure 7) specifies the set of PEs that tasks generated by a 
parBound n may be executed on, from P Ep in architecture t. For 
example if we need to generate sparks bounded by two levels from 
leaf 11 of the tree shown in Figure 4, we just call setparDist with the 
following parameters t 0 2 11, where t is the tree. The result is [11, 12, 
13, 14], a list of leaves with a distance of at most 2 in the architecture 
tree (t) 

3.4. setparAtLeast Function 
A parAtLeast is similar to parBound, as it takes an additional integer 
parameter specifying the minimum distance in the communication 
hierarchy that the computation may be communicated. Therefore, it 
can be defined in a similar way, as shown in Figure 8. 
 

Fig 8: setparAtLeast Locations Function 

So, if we need to generate sparks intended to be executed at least two 
levels from leaf 11 of the tree shown in Figure 4, we just call 
setparDist t  2 maxLevel  1 1, where t is the tree and maxLevel is the 

setparAtLeast::(Ord a, Show a)=>Tree a->Int ->  a -> [a] 
setparAtLeast t  n  p = setdFun  t  n maxLevel  p 
           where  
                maxLevel = 3 
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maximum distance that sparks can be sent within the architecture 
hierarchy. In this example, the result is [15, 16, 17, 18, 19, 20, 21]. 

3.5.  Construct Properties Test 
This section presents implementation-relevant properties that the 
architecture-aware semantics should satisfy. These properties are 
expressed as Boolean functions in Haskell and validated using 
QuickCheck [5] that is the properties are written as Haskell functions 
and can be automatically checked on either random input or with 
custom test data generators. Two types of properties are tested: the 
basic properties and specialized properties. 

1) Basic Properties: Let 푃 be the set of 푃퐸푠 which are the leaves of 
the tree representing a given hierarchical architecture. The 
domain H is the domain of all possible tree hierarchies. The 
domain P is the domain of all possible processor elements. 
a. Basic property one. For any processing element  푝 ∈  푃; the 

only possible placement of a bounded spark withupper and 
lower bounds of 0 and 0 is the 푝 itself.  Formally, this is 
written as: 

                              ∀ℎ  ∈  퐻;  ∀푝  ∈  푃setparDist h 0 0 p  = {p} 

b. Basic property two. Let path p be a function that returns the 
longest path to the PE from the root of the tree hierarchy. 
Let rLeaf h be a function that returns all processor elements 
(PEs) in the tree hierarchy. The path and rLeaf functions are 
described in Section [3.1]. For 푝 ∈ 푃 andℎ ∈  퐻, the set of 
PEs returned by calling the setparDist h 0 (length (path h p)) 
p function is equal to the set of all PEs in the hierarchy, as 
returned rLeaf  h. 

       ∀ ℎ ∈ 퐻 ; ∀푝 ∈ 푃setparDist h 0 ( length (path h p)) p =  rLeaf  h 
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c. Basic property three. If the upper bound u is less than 0 or 
lower bound m is greater than the longest path to the PE 
from root of the tree hierarchy then the set of PEs returned 
by calling setparDist h m u p function is an empty set of 
PEs. 

 
                                  setparDist h  m  u  p  = {}      ∀ h Z 
 
The above three basic properties can be considered sanity checks 
of the semantics. All basic properties have passed Quickcheck 
testing using one hundred randomly generated inputs, each with a 
randomly generated tree hierarchy. 
 

2) Specialised Properties: The proposed architecture-aware model 
exposes the tree hierarchy to the programmer through the parDist 
primitive. The parDist primitive provides a mechanism to spark 
tasks that can be executed in certain levels of the architecture 
hierarchy. We believe, for the implementation, it is important that 
these sparks do not leave their neighborhood, where neighborhood 
is the set of PEs specified by parDist primitive. Otherwise the 
bounded spark may diffuse to arbitrary locations after several 
steps of fishing (work stealing, as outlined in Section [2.2]. We 
define the following property to formally specify and check this 
property. 

a. Specialised proposed property one. This property reflects the 
initial intention of the bounded parDist. For 푝 ∈  푃 and 
ℎ ∈  퐻, the set of PEs returned by setparDist h 0 u p is equal 
to the set of PEs returned by setparDist h 0 u p’, where p’ is a 
possible location after one step of fishing. The aim is to 
guarantee that if the spark is fished again from p’ it will be 
executed in the same neighborhood specified by the original p. 
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           ∀ℎ ∈ 퐻;  ∀푝;  푝′ ∈ 푃;   푢  2 푍 ;   푝′ ∈    (setparDist h 0 u p) ) 

           setparDist h 0 u p'  = setparDist h 0 u p 

On closer examination, this property fails under the 
quickcheck test. In the case of an unbalanced tree hierarchy, 
the result of setparDist h 0 u p may return a subset of the set 
returned by setparDist h 0 u p. 

Fig 9: Tree Example of Specialized Proposed Property One 

For example, in the tree hierarchy shown in Figure 9, if PE (B) 
launches a spark with boundaries 0 and 2, then any PE in the outer 
circle can fish the spark. In particular, it can be fished by PE (D). In 
second step the spark can be fished only from PEs in the inner circle. 
That is why the property fails. However, this is not always true, 
illustrated in the next proposed property. 

b. Specialized proposed property two. For 푝 ∈ 푃 andℎ ∈  퐻, the 
set of PEs returned by setparDist h 0 u p’ is a subset of the set 
of PEs returned by setparDist h 0 u p. 
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∀ ℎ ∈ 퐻   , ∀ 푝 , 푝 ∈ 푃  , 푢 ∈   푍  ∈   푝  ∈ 
( 푠푒푡푝푎푟퐷푖푠푡 ℎ 0 푢 푝) )    => 

푠푒푡푝푎푟퐷푖푠푡 ℎ 0 푢 푝   ≤  푠푒푡푝푎푟퐷푖푠푡 ℎ 0 푢 푝 

 

 

 

 

 

 

 

Fig 10: Tree Example of Specialized Proposed Property Two. 

The property also fails the quickCheck test, because of 
unbalanced tree hierarchies. In the second step, the spark may 
be fished by a PE which is not one of the elements of the 
original PE neighborhood. For example, in the tree hierarchy 
showed in Figure 10, if PE (B) launches a spark with 
boundaries 0 and 2, then any PE in the blue circle can fish the 
spark. In particular, it can be fished by PE(C). In a second step, 
the spark can be fished from PE (C) by any PE in the red 
circle. In particular, it can be fished by PE (A), which is 
outside the original neighborhood. We call this behavior of the 
fishing mechanism diffusion of sparks. In the implementation, 
we must prevent this scenario from happening. We achieve 
this by resetting the boundaries of the spark to be 0 and 0, after 
the first fishing stage. This forces evaluation of the spark on 
the initial target PE, and thus within the neighborhood 
specified by the spark. 
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c. Specialized proposed property two. For p 2 P and h 2 H, after 
fishing a spark from p to p', which is within the bound u and 
after resetting the bound u for the spark to 1, this spark can 
only be fished by a p inside the original neighborhood of p. 
The set of PEs returned by setparDist h 0 1 p’ is a subset of 
the set of PEs returned by setparDist h 0 u p. 

 
∀ℎ ∈ 퐻; ∀푝;  푝  ∈ 푃;   푢  ∈  푍;  푝  ∈ 

( 푠푒푡푝푎푟퐷푖푠푡 ℎ 0 푢 푝) ) 
푠푒푡푝푎푟퐷푖푠푡 ℎ 0 1 푝′푠푒푡푝푎푟퐷푖푠푡 ℎ 0 푢 푝 

This property passes the quickCheck and guarantees that there is no 
diffusion of sparks, i.e. sparks always remain in the neighborhood 
specified by the original parDist. 
 
4. Related Work 
 Many of the semantics primitives prove described in this section are 
similar to the semantics prove presented in this paper. Berry and 
el.[3]defined a transitional semantics of a simple language to preserve 
the expected behavior of sequential programs. Mosses and el. [7] has 
investigated the sequential behavior of ML action semantics and 
extended the language with concurrency primitives. 

5. Conclusion 
We have presented the semantics for the architecture aware constructs, 
specifying the set of possible locations when providing boundaries to 
the sparks.  We have specified the expected behavior of the constructs 
by Haskell functions, achieving an executable specification. We have 
formulated several properties as Haskell predicates and used 
Quickcheck to check them on random input. The three basic 
properties represent sanity checks of the semantics. Two proposed 
implementation relevant properties did not hold, and counterexamples 
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extracted from Quickcheck identified diffusion of sparks to be the 
problem. In the implementation, we avoided this problem by resetting 
the boundaries after one fishing stage. The final property, checked 
with Quickcheck, shows that with this modification, the desired 
property holds. 
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