

133

A Comparative Study of Lossless Data
Compression Techniques

Elham Yakhlef Abushwashi
Technical electronic department
Technical faculty engineering, Zwara
Elham_abuelshwashi@yahoo.com

Hamida Aboulqasim Oushah
Software development department
College of Computer Technology, Zawia
e_hamida@yahoo.com

Abstract
Data compression is a process that reduces the data size, removing the
excessive information and redundancy. It is a common and important
requirement for most of the computerized applications, it can shorter
the data size, which lead to cost reduction. The main purpose of data
compression is to remove data redundancy from the store or
transmitting data, it is also an important application in file storage
field and distributed system. Data compression techniques are can be
used in different data formats such as text, audio, video and image
files. The aim of the study is to compare between many of the
Lossless data compression techniques and compare their performance.
There are many techniques of data compression and they can be
categorized as Lossy and Lossless Compression methods. In this study
 a Run-length encoding, Huffman Coding, Shannon-Fano Coding,
and LZW Encoding algorithm were used, their performance were
 compared by using data compression in the text format, the
compression ratio, compression factor and saving percentage were
calculated. Compression ratio in Huffman coding and Shannon-Fano

134

coding where less than Run-length encoding and LZW
encoding (38%, 40%, %81, 74%) respectively, while compression
factor where higher than Run-length encoding and LZW
encoding (2.63, 2.48, 1.23, 1.35) respectively, the results of saving
percentage by using Huffman coding and Shannon-Fano coding where
higher than Run-length encoding and LZW encoding (62%,60%, 19%,
26%) respectively. The study pointed to the effectiveness of Huffman
and Shannon-Fano coding reducing the size of the files compare to
other algorithms.

Key Keywords: Data compression, Lossless data compression
technique, Huffman Coding, Run length encoding, Shannon-Fano
coding, LZW encoding.

1. INTRODUCTION
Data compression is a way to reduce storage cost by eliminating
redundancies that happen in most files. There are two types of
compression, lossy and lossless. Lossy compression reduced file size
by eliminating some unneeded data that won’t be recognize by human
after decoding, this often used by video and audio compression[1].
Lossless compression on the other hand, manipulates each bit of data
inside file to minimize the size without losing any data after decoding.
This is important because if file lost even a single bit after decoding,
that mean the file is corrupted. Lossless data compression is a
technique that allows the use of data compression algorithms to
compress the text data and also allows the exact original data to be
reconstructed from the compressed data. This is in contrary to the
lossy data compression in which the exact original data cannot be
reconstructed from the compressed data. The popular ZIP file format
that is being used for the compression of data files is also an
application of lossless data compression approach. Lossless
compression is used when it is important that the original data and the
decompressed data be identical. Lossless text data compression
algorithms usually exploit statistical redundancy in such a way so as

135

to represent the sender's data more concisely without any error or any
sort of loss of important information contained within the text input
data. Since most of the real-world data has statistical redundancy,
therefore lossless data compression is possible. Lossless compression
methods may be categorized according to the type of data they are
designed to compress. Compression algorithms are basically used for
the compression of text, images and sound. Most lossless compression
programs use two different kinds of algorithms: one which generates a
statistical model for the input data and another which maps the input
data to bit strings using this model in such a way that frequently
encountered data will produce shorter output than improbable(less
frequent) data. The advantage of lossless methods over lossy methods
is that Lossless compression results are in a closer representation of
the original input data. The performance of algorithms can be
compared using the parameters such as Compression Ratio and Saving
Percentage. In a lossless data compression file the original message
can be exactly decoded. Lossless data compression works by finding
repeated patterns in a message and encoding those patterns in an
efficient manner. For this reason, lossless data compression is also
referred to as redundancy reduction[2]. Because redundancy reduction
is dependent on patterns in the message, it does not work well on
random messages. Lossless data compression is ideal for text.

2. COMPRESSION TECHNIQUES
There are two categories of compression techniques, lossy and
lossless. Whilst each uses different techniques to compress files, both
have the same aim: To look for duplicate data in the data.

2.1 Lossless Compression
Lossless data compression is a class of data compression algorithms
that allows the original data to be perfectly reconstructed from the
compressed data. In lossless data compression, the integrity of the data
is preserved. Redundant data is removed in compression and added
during decompression. Lossless compression methods are normally

136

used in cases where it is important that the original and the
decompressed data be identical [3].

2.2 Lossy Compression
In lossy data compression original data is not exactly restored after
decompression and accuracy of reconstruction is traded with
efficiency of compression. This type of compression used for image
data compression. The decompression ratio is high compare to lossless
data compression technique. Sometimes some loss of quality is
acceptable. For example the human ear cannot hear all frequencies,
people can’t hear may end up with a smaller file, but it is not possible
to get back to how exactly the original music sounded [2]. In such
cases, we can use a lossy data compression methods. These methods
are cheaper, they take less time and space when it comes to sending
millions of bits per second for images and video.

3. LOSSLESS COMPRESSION TECHNIQUES
3.1 Run-length encoding(RLE)
Run Length Encoding (RLE) is the simplest of the data compression
algorithms. It is created especially for data with strings of repeated
symbols [3]. The consecutive sequences of symbols are identified as
runs and the others are identified as non runs in this algorithm [4]. The
general idea behind this algorithm is to replace consecutive repeating
occurrences of a symbol by one occurrence of the symbol followed by
the number of occurrences. The RLE algorithm uses those runs to
compress the original source while keeping all the non-runs without
using for the compression process [3].
For example, consider the following text string:

 eelhhhaaammhhhaaammmiiddaaa = 27 characters
 = 27 * 8 bits for each character
 = 216 bits

137

Compressed string:
 2l1h3a3m2h3a3m3i2d2a3 = 22 characters
 = 22 * 8 bits for each character
 = 176 bits

3.2 Huffman Coding
One of the most popular techniques for removing coding redundancy is
due to Huffman [3]. Huffman coding was developed by Dr. David A.
Huffman in 1952. Huffman coding assigns shorter codes to symbols
that occur more frequently and longer codes to those that occur less
frequently [5].

There are mainly two major parts in Huffman Coding

 Build a Huffman Tree from input characters.

 Traverse the Huffman Tree and assign codes to characters.

Huffman uses bottom-up approach, it is simple and can be described in
terms of creating a Huffman code tree [3].
Example for Huffman coding:

 Elhamabushwashihamidaoushah

Count of symbols stream as shown in Table 1:

The tree of Huffman example is shown below in Fig.1:

Table 1: Huffman symbols stream

Symbol H a s m u i e l B w d O

Count 6 6 3 2 2 2 1 1 1 1 1 1

138

The Table 2 illustrates the total length of compression output.

Table 2: Huffman total length
Symbol Freq. code code length total length

H 6 00 2 12
A 6 01 2 12
S 3 100 3 9
M 2 1001 4 8
U 2 1010 4 8
I 2 1011 4 8
E 1 100 3 3
L 1 101 3 3
B 1 1100 4 4
W 1 1101 4 4
D 1 1110 4 4
O 1 1111 4 4

Total 79 bits

Fig. 1: Huffman Tree

139

Input:

 elhamabushwashihamidaoushah = 27 characters

 = 27 * 8 bits for each character

 = 216 bits

Output:
100101000110010111001010100000110101100000101100011001101
1111001111110101000000100 = 82 bits

3.3 Shannon-Fano Coding
This is one of an earliest technique for data compression that was
invented by Claude Shannon and Robert Fano in 1949.In this
technique, Shannon-Fano Algorithm is a top-down approach, 1 sort
symbols according to their frequencies [4].

A simple example will be used to illustrate the algorithm:

Input stream:

 elhamabushwashihamidaoushah

Frequency symbols in stream as shown in Table 3:

Recursively divide into two parts, each with approximately same
number of counts, i.e. split in two so as to minimize difference in
counts. Left group gets 0, right group gets 1 [6]. Fig. 2 shows the
Shannon coding tree.

Table 3: Frequency of character

Symbol h A s M u i e l b w d O

Count 6 6 3 2 2 2 1 1 1 1 1 1

140

The following table illustrates the complete operation for this
algorithm.

Table 4: Shannnon-Fano total length

Symbol Freq. Code code length total length
H 6 00 2 12
A 6 01 2 12
S 3 100 3 9
M 2 1010 4 8
U 2 1011 4 8
I 2 1100 4 8
E 1 11010 5 5
L 1 11011 5 5
B 1 11100 5 5
W 1 11101 5 5
D 1 11110 5 5
O 1 11111 5 5
Total 87 bits

Fig. 2: Shannon-Fano Tree

141

Input:

 elhamabushwashihamidaoushah = 27 characters

 = 27 * 8 bits for each character

 = 216 bits

Output:
110101101100011010011110010111000011101001000011000001101
011001111001111111011100000100 = 87 bits

3.4 LZW Encoding Algorithm
LZW is the first letter of the names of the scientists Abraham Lempel,
Jakob Ziv, and Terry Welch, who developed this algorithm. LZW
compression is a lossless compression algorithm.
LZW algorithm is just like a greedy approach and divides text into
substrings. LZW compression algorithm is dictionary based algorithm
which always output a code for a character. Each character has a code
and index number in dictionary. Input data which we want to compress
is read from file. Initially data is entered in buffer for searching in
dictionary to generate its code. If there is no matching character found
in dictionary. Then it will be entered as new character in dictionary and
assign a code. If character is in dictionary then its code will be
generate. Output codes have less number of bits than input data. This
technique is useful for both graphics images and digitized voice [7].
Table 4 shows the complete operation of this algorithm.

142

Table 5: LZW operations

Input string= elhamabushwashihamidaoushah
Character input Code output New code value New string

E E None
E L 256 EL
L H 257 LH
H A 258 HA
A M 259 AM
M A 260 MA
A B 261 AB
B U 262 BU
U S 263 US
S H 264 SH
H W 265 HW
W A 266 WA
A S 267 AS
S H 264 SH

SH I 268 SHI
I H 269 IH
H A 258 HA

HA M 270 HAM
M I 271 MI
I D 272 ID
D A 273 DA
A O 274 AO
O U 275 OU
U S 263 US

US H 276 USH
H A 258 HA

HA H 277 HAH

143

Input: elhamabushwashihamidaoushah = 27 characters

 = 27 * 8 bits for each character

 = 216 bits

Output: ellhhaammaabbuusshhwwaasshiihhammiiddaauushhah = 87
bits

4. MEASURING COMPRESSION PERFORMANCES
Performance measure is use to find which technique is good according
to some criteria. There are various criteria to measure the performance
of compression algorithm. Since the compression behavior depends on
the redundancy of symbols in the source file, it is difficult to measure
performance of compression algorithm in general. The performance of
data compression depends on the type of data and structure of input
source. The compression behavior depends on the category of the
compression algorithm: lossy or lossless [8]. Following are some
measurements used to evaluate the performances of lossless
algorithms.
Compression Ratio: is the ratio between the size of the source file and
the size of the compressed file.

푐표푚푝푟푒푠푠푖표푛 푟푎푡푖표 =

Compression Factor: is the inverse of the compression ratio. That is
the ratio between the size of the source file and the size of the
compressed file.

푐표푚푝푟푒푠푠푖표푛 푓푎푐푡표푟 =

Saving Percentage: calculates the shrinkage of the source file as a
percentage.

푠푎푣푖푛푔 푝푒푟푐푒푛푡푎푔푒
=

%

144

5. RESULTS
In this work mainly focused on performance of four lossless
compression algorithms.
The table 6 shows the comparative results (output size, compression
ratio, compression factor, and saving percentage) between our selected
algorithms.

Table 6: Comparative results.

 Algorithm
 RLE Huffman Shannon-Fano LZW

Input size
(bits)

216 216 216 216

Output size
(bits)

176 82 87 160

Compression
Ratio (%)

81 38 40 74

Compression
Factor

1.23 2.63 2.48 1.35

Saving
Percentage(%)

19 62 60 26

According to the results shown in table 6, Huffman and Shannon-Fano
coding can reduce the file size around 50% of original file size, while
the Shannon-Fano Coding, and LZW Encoding algorithm can reduce
approximately (1.2%), This finding was consistent with study
conducted Achinta,2016 [1]. Study, the compression ratio of
Huffman and Shannon-Fano coding were more effective than the
Shannon-Fano Coding, and LZW Encoding, this result compatible
with study done by K.A. Ramya.2006 [2], compression factor is the
inverse of compression ratio, and saving percentage of the Huffman
and Shannon-Fano coding is better while compared to others.
The bar chart shows the original file size before and after
compression, comparison between compressed file size, compression

145

ratio, compression factor, and saving percentage, by using Huffman,
Shannon-Fano coding, Run Length encoding, and LZW encoding in
Fig. 3. In Fig. 3a. the graph shows original file size before
compression (216 bits), and the size after compression using Huffman
(82 bits), Shannon-Fano (87 bits), Run Length (176 bits), and LZW
(160 bits), it is clear that the file compressed near to the half by using
by Huffman and Shannon-Fano coding.

 d. Saving percentage.

a. Compressed file size. b. Compression ratio.

c. Compression factor.
Fig. 3. Compartive Results

146

In Fig. 3b compression ratio calculated by Huffman and Shannon-Fano
coding are almost half the compression ratio calculated by Run Length
encoding, and LZW encoding, in fig. 3c the compression factor
calculated by Huffman and Shannon-Fano coding is almost double the
compression factor calculated by the Run Length encoding, and LZW
encoding.
In Fig. 3d the saving percentage is almost 60% by using Huffman and
Shannon-Fano coding with and around 26% by using Run Length
encoding, and LZW encoding.

6. CONCLUSION
Data text compression using Huffman and Shannon-Fano coding
algorithms give small size of data in compare to Run-length and LZW
encoding.
Compression Huffman and Shannon-Fano coding algorithms in data
text resulting a smaller size of data than the size of the data by Run-
length and LZW encoding
Huffman and Shannon-Fano coding are very powerful over Run-
length and LZW encoding, they provide better results and reduce the
size of the text. Run-length encoding more effective when data text
with strings of continuous repeated symbols.

REFERENCES
1. Achinta Roy, Dr. Lakshmi Prasad Saikia, “A Comparative

Study of Lossless Data Compression Techniques on Text
Data” International Journal of Advanced Research in
Computer Science and Software Engineering, Volume 6, Issue
2, February 2016.

2. K.A. Ramya1, M.Pushpa, ,M.Phil Student, Assistant
Professor, “Comparative Study on Different Lossless Data
Compression Methods”, International Journal of Scientific
Engineering and Applied Science (IJSEAS) - Volume-2, Issue-
1,January 2016 ISSN: 2395-3470 www.ijseas.com.

147

3. P.RAVI1, Dr.A.ASHOKKUMAR, “A Study of Various Data
Compression Techniques”, International journal of computer
scinece & communication, Volume 6, Issue 2, April-
September 2015, ISSN:0973-7391.

4. Amit Jain a * Kamaljit I. Lakhtariab, Prateek Srivastava, “A
Comparative Study of Lossless Compression Algorithm on
Text Data”, Proc. of Int. Conf. on Advances in Computer
Science, AETACS, 2013.

5. Dr. AMIN MUBARK ALAMIN IBRAHIM, Dr. MUSTAFA
ELGILI MUSTAFA, “Comparison Between (RLE And
Huffman) Algorithmsfor Lossless Data Compression”,
(IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE
TECHNOLOGY AND RESEARCH, Volume No.3, Issue
No.1, December – January 2015, 1808 – 1812.

6. B.A. Al-hmeary, “Role of Run Length Encoding on Increasing
Huffman Effect in Text Compression”, Journal of Kerbala
University , Vol. 6 No.2 Scientific. 2008.

7. Mamta Sharma, S.L. Bawa D.A.V. college, “Compression
Using Huffman Coding”, IJCSNS International Journal of
Computer Science and Network Security”, VOL.10 No.5, May
2010.

8. Pooja Singh, “LOSSLESS DATA COMPRESSION
TECHNIQUES AND COMPARISON BETWEEN THE
ALGORITHMS”, International Research Journal of
Engineering and Technology (IRJET), e-ISSN: 2395-0056, p-
ISSN: 2395-0072, Volume: 02 Issue: 02 May-2015.
www.irjet.net

